Suppr超能文献

非参数贝叶斯随机有序潜在类别模型

Nonparametric Bayes Stochastically Ordered Latent Class Models.

作者信息

Yang Hongxia, O'Brien Sean, Dunson David B

机构信息

Mathematical Sciences Department, Watson Research Center, IBM, Yorktown Heights, NY 10598 (

出版信息

J Am Stat Assoc. 2011 Sep 1;106(495):807-817. doi: 10.1198/jasa.2011.ap10058.

Abstract

Latent class models (LCMs) are used increasingly for addressing a broad variety of problems, including sparse modeling of multivariate and longitudinal data, model-based clustering, and flexible inferences on predictor effects. Typical frequentist LCMs require estimation of a single finite number of classes, which does not increase with the sample size, and have a well-known sensitivity to parametric assumptions on the distributions within a class. Bayesian nonparametric methods have been developed to allow an infinite number of classes in the general population, with the number represented in a sample increasing with sample size. In this article, we propose a new nonparametric Bayes model that allows predictors to flexibly impact the allocation to latent classes, while limiting sensitivity to parametric assumptions by allowing class-specific distributions to be unknown subject to a stochastic ordering constraint. An efficient MCMC algorithm is developed for posterior computation. The methods are validated using simulation studies and applied to the problem of ranking medical procedures in terms of the distribution of patient morbidity.

摘要

潜在类别模型(LCMs)越来越多地用于解决各种各样的问题,包括多变量和纵向数据的稀疏建模、基于模型的聚类以及对预测效应的灵活推断。典型的频率主义LCMs需要估计有限数量的类别,该数量不会随样本量增加,并且对类内分布的参数假设具有众所周知的敏感性。贝叶斯非参数方法已被开发出来,以允许总体中有无限数量的类别,样本中表示的类别数量随样本量增加。在本文中,我们提出了一种新的非参数贝叶斯模型,该模型允许预测变量灵活地影响对潜在类别的分配,同时通过允许特定类别的分布在随机排序约束下未知来限制对参数假设的敏感性。开发了一种有效的MCMC算法用于后验计算。通过模拟研究对这些方法进行了验证,并将其应用于根据患者发病率分布对医疗程序进行排名的问题。

相似文献

1
Nonparametric Bayes Stochastically Ordered Latent Class Models.
J Am Stat Assoc. 2011 Sep 1;106(495):807-817. doi: 10.1198/jasa.2011.ap10058.
2
Bayesian nonparametric inference on stochastic ordering.
Biometrika. 2008 Dec;95(4):859-874. doi: 10.1093/biomet/asn043. Epub 2008 Nov 3.
3
Bayesian nonparametric latent class model for longitudinal data.
Stat Methods Med Res. 2020 Nov;29(11):3381-3395. doi: 10.1177/0962280220928384. Epub 2020 Jun 14.
4
Bayesian nonparametric hierarchical modeling.
Biom J. 2009 Apr;51(2):273-84. doi: 10.1002/bimj.200800183.
5
MULTIVARIATE KERNEL PARTITION PROCESS MIXTURES.
Stat Sin. 2010 Oct 10;20(4):1395-1422.
6
Bayesian isotonic density regression.
Biometrika. 2011 Sep;98(3):537-551. doi: 10.1093/biomet/asr025.
7
Stochastically ordered multiple regression.
Biostatistics. 2010 Jul;11(3):419-31. doi: 10.1093/biostatistics/kxq001. Epub 2010 Feb 11.
8
Simplex Factor Models for Multivariate Unordered Categorical Data.
J Am Stat Assoc. 2012 Mar 1;107(497):362-377. doi: 10.1080/01621459.2011.646934.
9
Nonparametric Bayes Conditional Distribution Modeling With Variable Selection.
J Am Stat Assoc. 2009 Dec 1;104(488):1646-1660. doi: 10.1198/jasa.2009.tm08302.
10
Bayesian variable selection for latent class models.
Biometrics. 2011 Sep;67(3):917-25. doi: 10.1111/j.1541-0420.2010.01502.x. Epub 2010 Oct 29.

本文引用的文献

1
Bayesian nonparametric inference on stochastic ordering.
Biometrika. 2008 Dec;95(4):859-874. doi: 10.1093/biomet/asn043. Epub 2008 Nov 3.
2
A class of mixtures of dependent tail-free processes.
Biometrika. 2011 Sep;98(3):553-566. doi: 10.1093/biomet/asq082.
3
Bayesian Nonparametric Hidden Markov Models with application to the analysis of copy-number-variation in mammalian genomes.
J R Stat Soc Series B Stat Methodol. 2011 Jan 1;73(1):37-57. doi: 10.1111/j.1467-9868.2010.00756.x.
4
Risk adjustment for congenital heart surgery: the RACHS-1 method.
Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004;7:180-4. doi: 10.1053/j.pcsu.2004.02.009.
5
The Aristotle score: a complexity-adjusted method to evaluate surgical results.
Eur J Cardiothorac Surg. 2004 Jun;25(6):911-24. doi: 10.1016/j.ejcts.2004.03.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验