Suppr超能文献

用于分析空气污染与健康结果数据的时变系数模型。

Time-varying coefficient models for the analysis of air pollution and health outcome data.

作者信息

Lee Duncan, Shaddick Gavin

机构信息

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK.

出版信息

Biometrics. 2007 Dec;63(4):1253-61. doi: 10.1111/j.1541-0420.2007.00776.x. Epub 2007 Apr 9.

Abstract

In this article a time-varying coefficient model is developed to examine the relationship between adverse health and short-term (acute) exposure to air pollution. This model allows the relative risk to evolve over time, which may be due to an interaction with temperature, or from a change in the composition of pollutants, such as particulate matter, over time. The model produces a smooth estimate of these time-varying effects, which are not constrained to follow a fixed parametric form set by the investigator. Instead, the shape is estimated from the data using penalized natural cubic splines. Poisson regression models, using both quasi-likelihood and Bayesian techniques, are developed, with estimation performed using an iteratively re-weighted least squares procedure and Markov chain Monte Carlo simulation, respectively. The efficacy of the methods to estimate different types of time-varying effects are assessed via a simulation study, and the models are then applied to data from four cities that were part of the National Morbidity, Mortality, and Air Pollution Study.

摘要

在本文中,我们开发了一种时变系数模型,以研究不良健康状况与短期(急性)空气污染暴露之间的关系。该模型允许相对风险随时间演变,这可能是由于与温度的相互作用,或者是由于污染物组成(如颗粒物)随时间的变化。该模型对这些时变效应进行了平滑估计,这些估计不受研究者设定的固定参数形式的限制。相反,其形状是使用惩罚自然立方样条从数据中估计出来的。我们开发了使用拟似然和贝叶斯技术的泊松回归模型,分别使用迭代加权最小二乘法和马尔可夫链蒙特卡罗模拟进行估计。通过模拟研究评估了估计不同类型时变效应方法的有效性,然后将这些模型应用于来自四个城市的数据,这些城市是国家发病率、死亡率和空气污染研究的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验