Johnson Todd, Bartol Tom, Sejnowski Terrence, Mjolsness Eric
Department of Computer Science, University of California Irvine CA 92697, USA.
Phys Biol. 2015 Jun 18;12(4):045005. doi: 10.1088/1478-3975/12/4/045005.
A stochastic reaction network model of Ca(2+) dynamics in synapses (Pepke et al PLoS Comput. Biol. 6 e1000675) is expressed and simulated using rule-based reaction modeling notation in dynamical grammars and in MCell. The model tracks the response of calmodulin and CaMKII to calcium influx in synapses. Data from numerically intensive simulations is used to train a reduced model that, out of sample, correctly predicts the evolution of interaction parameters characterizing the instantaneous probability distribution over molecular states in the much larger fine-scale models. The novel model reduction method, 'graph-constrained correlation dynamics', requires a graph of plausible state variables and interactions as input. It parametrically optimizes a set of constant coefficients appearing in differential equations governing the time-varying interaction parameters that determine all correlations between variables in the reduced model at any time slice.
一个关于突触中Ca(2+)动力学的随机反应网络模型(Pepke等人,《公共科学图书馆·计算生物学》6 e1000675)使用基于规则的反应建模符号在动态语法和MCell中进行表达和模拟。该模型追踪钙调蛋白和CaMKII对突触中钙内流的反应。来自数值密集型模拟的数据用于训练一个简化模型,该简化模型在样本外能够正确预测表征更大规模精细模型中分子状态瞬时概率分布的相互作用参数的演变。这种新颖的模型简化方法“图约束相关动力学”需要一个合理的状态变量和相互作用图作为输入。它通过参数优化一组出现在控制时变相互作用参数的微分方程中的常数系数,这些时变相互作用参数决定了简化模型在任何时间切片上变量之间的所有相关性。