Suppr超能文献

用于溶液和表面生物反应扩散系统的快速蒙特卡罗模拟方法

FAST MONTE CARLO SIMULATION METHODS FOR BIOLOGICAL REACTION-DIFFUSION SYSTEMS IN SOLUTION AND ON SURFACES.

作者信息

Kerr Rex A, Bartol Thomas M, Kaminsky Boris, Dittrich Markus, Chang Jen-Chien Jack, Baden Scott B, Sejnowski Terrence J, Stiles Joel R

机构信息

HHMI Janelia Farm Research Campus, Ashburn, VA 20147 and Computational Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037. This author was supported by grants NIH R01 GM069630, NIH P01-NS044306, NSF PHY-0216576, and PHY-0225630 and by HHMI.

出版信息

SIAM J Sci Comput. 2008 Oct 13;30(6):3126. doi: 10.1137/070692017.

Abstract

Many important physiological processes operate at time and space scales far beyond those accessible to atom-realistic simulations, and yet discrete stochastic rather than continuum methods may best represent finite numbers of molecules interacting in complex cellular spaces. We describe and validate new tools and algorithms developed for a new version of the MCell simulation program (MCell3), which supports generalized Monte Carlo modeling of diffusion and chemical reaction in solution, on surfaces representing membranes, and combinations thereof. A new syntax for describing the spatial directionality of surface reactions is introduced, along with optimizations and algorithms that can substantially reduce computational costs (e.g., event scheduling, variable time and space steps). Examples for simple reactions in simple spaces are validated by comparison to analytic solutions. Thus we show how spatially realistic Monte Carlo simulations of biological systems can be far more cost-effective than often is assumed, and provide a level of accuracy and insight beyond that of continuum methods.

摘要

许多重要的生理过程发生的时间和空间尺度远远超出了原子级真实模拟所能达到的范围,然而离散随机方法而非连续介质方法可能最适合描述有限数量的分子在复杂细胞空间中的相互作用。我们描述并验证了为新版MCell模拟程序(MCell3)开发的新工具和算法,该程序支持对溶液中、代表膜的表面上以及二者组合情况下的扩散和化学反应进行广义蒙特卡罗建模。引入了一种用于描述表面反应空间方向性的新语法,以及能够大幅降低计算成本的优化方法和算法(例如事件调度、可变时间和空间步长)。通过与解析解比较,验证了简单空间中简单反应的示例。因此,我们展示了生物系统的空间真实蒙特卡罗模拟如何能够比通常认为的更具成本效益,并提供超越连续介质方法的准确性和洞察力。

相似文献

2
MCell4 with BioNetGen: A Monte Carlo simulator of rule-based reaction-diffusion systems with Python interface.
PLoS Comput Biol. 2024 Apr 24;20(4):e1011800. doi: 10.1371/journal.pcbi.1011800. eCollection 2024 Apr.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Microphysiological Modeling of the Structure and Function of Neuromuscular Transmitter Release Sites.
Front Synaptic Neurosci. 2022 Jun 13;14:917285. doi: 10.3389/fnsyn.2022.917285. eCollection 2022.
5
Realistic Microstructure Simulator (RMS): Monte Carlo simulations of diffusion in three-dimensional cell segmentations of microscopy images.
J Neurosci Methods. 2021 Feb 15;350:109018. doi: 10.1016/j.jneumeth.2020.109018. Epub 2020 Dec 3.
6
Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations.
Biophys Chem. 2006 Jun 1;121(3):194-208. doi: 10.1016/j.bpc.2006.01.008. Epub 2006 Feb 28.
7
Rapid creation, Monte Carlo simulation, and visualization of realistic 3D cell models.
Methods Mol Biol. 2009;500:237-87. doi: 10.1007/978-1-59745-525-1_9.
8
9
Efficient and scalable prediction of stochastic reaction-diffusion processes using graph neural networks.
Math Biosci. 2024 Sep;375:109248. doi: 10.1016/j.mbs.2024.109248. Epub 2024 Jul 8.
10
MCell-R: A Particle-Resolution Network-Free Spatial Modeling Framework.
Methods Mol Biol. 2019;1945:203-229. doi: 10.1007/978-1-4939-9102-0_9.

引用本文的文献

1
Trans-synaptic molecular context of NMDA receptor nanodomains.
Nat Commun. 2025 Aug 12;16(1):7460. doi: 10.1038/s41467-025-62766-y.
2
In Silico identification and modelling of FDA-approved drugs targeting T-type calcium channels.
PLoS One. 2025 Aug 8;20(8):e0327386. doi: 10.1371/journal.pone.0327386. eCollection 2025.
3
PyReconstruct: A fully open-source, collaborative successor to Reconstruct.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2505822122. doi: 10.1073/pnas.2505822122. Epub 2025 Jul 30.
6
The architecture of invaginating rod synapses slows glutamate diffusion and shapes synaptic responses.
J Gen Physiol. 2025 May 5;157(3). doi: 10.1085/jgp.202413746. Epub 2025 Feb 28.
7
Data Hazards as An Ethical Toolkit for Neuroscience.
Neuroethics. 2025;18(1):15. doi: 10.1007/s12152-024-09580-3. Epub 2025 Feb 19.
8
Parallelization of particle-based reaction-diffusion simulations using MPI.
bioRxiv. 2024 Dec 10:2024.12.06.627287. doi: 10.1101/2024.12.06.627287.
9
Spatial modeling algorithms for reactions and transport in biological cells.
Nat Comput Sci. 2025 Jan;5(1):76-89. doi: 10.1038/s43588-024-00745-x. Epub 2024 Dec 19.

本文引用的文献

1
First-passage Monte Carlo algorithm: diffusion without all the hops.
Phys Rev Lett. 2006 Dec 8;97(23):230602. doi: 10.1103/PhysRevLett.97.230602. Epub 2006 Dec 4.
2
A comprehensive pathway map of epidermal growth factor receptor signaling.
Mol Syst Biol. 2005;1:2005.0010. doi: 10.1038/msb4100014. Epub 2005 May 25.
3
Simulations of (an)isotropic diffusion on curved biological surfaces.
Biophys J. 2006 Feb 1;90(3):878-85. doi: 10.1529/biophysj.105.073809. Epub 2005 Nov 11.
4
Stochastic simulation of chemical reactions with spatial resolution and single molecule detail.
Phys Biol. 2004 Dec;1(3-4):137-51. doi: 10.1088/1478-3967/1/3/001.
5
Numerical computation of diffusion on a surface.
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11151-6. doi: 10.1073/pnas.0504953102. Epub 2005 Aug 2.
6
Evidence for ectopic neurotransmission at a neuronal synapse.
Science. 2005 Jul 15;309(5733):446-51. doi: 10.1126/science.1108239.
7
Large scale simulation of protein mechanics and function.
Adv Protein Chem. 2003;66:195-247. doi: 10.1016/s0065-3233(03)66006-7.
8
Anisotropy of fluctuation dynamics of proteins with an elastic network model.
Biophys J. 2001 Jan;80(1):505-15. doi: 10.1016/S0006-3495(01)76033-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验