Schättler Heinz, Ledzewicz Urszula, Amini Behrooz
Department of Electrical and Systems Engineering, Washington University, St. Louis, MO, 63130, USA.
Department of Mathematics and Statistics, Southern Illinois University, Edwardsville, IL, 62025, USA.
J Math Biol. 2016 Apr;72(5):1255-80. doi: 10.1007/s00285-015-0907-y. Epub 2015 Jun 19.
A minimally parameterized mathematical model for low-dose metronomic chemotherapy is formulated that takes into account angiogenic signaling between the tumor and its vasculature and tumor inhibiting effects of tumor-immune system interactions. The dynamical equations combine a model for tumor development under angiogenic signaling formulated by Hahnfeldt et al. with a model for tumor-immune system interactions by Stepanova. The dynamical properties of the model are analyzed. Depending on the parameter values, the system encompasses a variety of medically realistic scenarios that range from cases when (i) low-dose metronomic chemotherapy is able to eradicate the tumor (all trajectories converge to a tumor-free equilibrium point) to situations when (ii) tumor dormancy is induced (a unique, globally asymptotically stable benign equilibrium point exists) to (iii) multi-stable situations that have both persistent benign and malignant behaviors separated by the stable manifold of an unstable equilibrium point and finally to (iv) situations when tumor growth cannot be overcome by low-dose metronomic chemotherapy. The model forms a basis for a more general study of chemotherapy when the main components of a tumor's microenvironment are taken into account.
建立了一种低剂量节拍化疗的最小参数化数学模型,该模型考虑了肿瘤与其脉管系统之间的血管生成信号以及肿瘤-免疫系统相互作用的肿瘤抑制作用。动力学方程将Hahnfeldt等人提出的血管生成信号下肿瘤发展模型与Stepanova提出的肿瘤-免疫系统相互作用模型相结合。分析了该模型的动力学性质。根据参数值,该系统包含多种医学上现实的情况,范围从(i)低剂量节拍化疗能够根除肿瘤(所有轨迹收敛到无肿瘤平衡点)的情况到(ii)诱导肿瘤休眠(存在唯一的全局渐近稳定良性平衡点)的情况,再到(iii)具有由不稳定平衡点的稳定流形分隔的持续良性和恶性行为的多稳态情况,最后到(iv)低剂量节拍化疗无法克服肿瘤生长的情况。当考虑肿瘤微环境的主要成分时,该模型为更全面的化疗研究奠定了基础。