Suppr超能文献

数学模型在节律性化疗中的应用:从最小参数化模型中可以推断出什么?

Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?

作者信息

Ledzewicz Urszula, Schättler Heinz

机构信息

Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1653, USA; Institute of Mathematics, Lodz University of Technology, 90-924, Lodz, Poland.

Dept. of Electrical and Systems Engineering Washington University, St. Louis, MO, 63130, USA.

出版信息

Cancer Lett. 2017 Aug 10;401:74-80. doi: 10.1016/j.canlet.2017.03.021. Epub 2017 Mar 18.

Abstract

Metronomic chemotherapy refers to the frequent administration of chemotherapy at relatively low, minimally toxic doses without prolonged treatment interruptions. Different from conventional or maximum-tolerated-dose chemotherapy which aims at an eradication of all malignant cells, in a metronomic dosing the goal often lies in the long-term management of the disease when eradication proves elusive. Mathematical modeling and subsequent analysis (theoretical as well as numerical) have become an increasingly more valuable tool (in silico) both for determining conditions under which specific treatment strategies should be preferred and for numerically optimizing treatment regimens. While elaborate, computationally-driven patient specific schemes that would optimize the timing and drug dose levels are still a part of the future, such procedures may become instrumental in making chemotherapy effective in situations where it currently fails. Ideally, mathematical modeling and analysis will develop into an additional decision making tool in the complicated process that is the determination of efficient chemotherapy regimens. In this article, we review some of the results that have been obtained about metronomic chemotherapy from mathematical models and what they infer about the structure of optimal treatment regimens.

摘要

节拍化疗是指以相对较低、毒性最小的剂量频繁进行化疗,且不出现长时间的治疗中断。与旨在根除所有恶性细胞的传统或最大耐受剂量化疗不同,在节拍给药中,当根除肿瘤难以实现时,目标通常在于对疾病进行长期管理。数学建模及后续分析(理论分析和数值分析)已成为一种越来越有价值的(计算机模拟)工具,可用于确定应优先采用特定治疗策略的条件,以及对治疗方案进行数值优化。虽然能够优化治疗时间和药物剂量水平的、精心设计的、由计算驱动的针对特定患者的方案仍是未来的一部分,但此类程序可能会在使化疗在目前无效的情况下发挥作用方面变得至关重要。理想情况下,数学建模和分析将发展成为在确定有效化疗方案这一复杂过程中的一种额外决策工具。在本文中,我们回顾了从数学模型中获得的关于节拍化疗的一些结果,以及它们对最佳治疗方案结构的推断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验