Suppr超能文献

缺氧缺血性脑病新生儿神经发育结局的多模态预测指标

Multimodal predictor of neurodevelopmental outcome in newborns with hypoxic-ischaemic encephalopathy.

作者信息

Temko Andriy, Doyle Orla, Murray Deirdre, Lightbody Gordon, Boylan Geraldine, Marnane William

机构信息

Department of Electrical and Electronic Engineering, University College Cork, Ireland; Neonatal Brain Research Group, INFANT Research Centre, University College Cork, Ireland.

Department of Neuroimaging, Institute of Psychiatry, King׳s College London, London, UK.

出版信息

Comput Biol Med. 2015 Aug;63:169-77. doi: 10.1016/j.compbiomed.2015.05.017. Epub 2015 Jun 10.

Abstract

Automated multimodal prediction of outcome in newborns with hypoxic-ischaemic encephalopathy is investigated in this work. Routine clinical measures and 1h EEG and ECG recordings 24h after birth were obtained from 38 newborns with different grades of HIE. Each newborn was reassessed at 24 months to establish their neurodevelopmental outcome. A set of multimodal features is extracted from the clinical, heart rate and EEG measures and is fed into a support vector machine classifier. The performance is reported with the statistically most unbiased leave-one-patient-out performance assessment routine. A subset of informative features, whose rankings are consistent across all patients, is identified. The best performance is obtained using a subset of 9 EEG, 2h and 1 clinical feature, leading to an area under the ROC curve of 87% and accuracy of 84% which compares favourably to the EEG-based clinical outcome prediction, previously reported on the same data. The work presents a promising step towards the use of multimodal data in building an objective decision support tool for clinical prediction of neurodevelopmental outcome in newborns with hypoxic-ischaemic encephalopathy.

摘要

本研究探讨了缺氧缺血性脑病新生儿预后的自动化多模态预测。从38例不同程度HIE的新生儿中获取了常规临床指标以及出生后24小时的1小时脑电图和心电图记录。在24个月时对每个新生儿进行重新评估,以确定其神经发育结局。从临床、心率和脑电图指标中提取了一组多模态特征,并将其输入支持向量机分类器。采用统计学上最无偏倚的留一患者法性能评估程序报告性能。确定了一组在所有患者中排名一致的信息性特征子集。使用9个脑电图、2个心率和1个临床特征的子集可获得最佳性能,受试者工作特征曲线下面积为87%,准确率为84%,与之前基于相同数据报道的基于脑电图的临床结局预测相比更具优势。这项工作朝着利用多模态数据构建客观决策支持工具迈出了有前景的一步,用于预测缺氧缺血性脑病新生儿的神经发育结局。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验