Suppr超能文献

相似文献

1
Using Data Independent Acquisition (DIA) to Model High-responding Peptides for Targeted Proteomics Experiments.
Mol Cell Proteomics. 2015 Sep;14(9):2331-40. doi: 10.1074/mcp.M115.051300. Epub 2015 Jun 22.
2
A computational tool to detect and avoid redundancy in selected reaction monitoring.
Mol Cell Proteomics. 2012 Aug;11(8):540-9. doi: 10.1074/mcp.M111.013045. Epub 2012 Apr 24.
3
SeFilter-DIA: Squeeze-and-Excitation Network for Filtering High-Confidence Peptides of Data-Independent Acquisition Proteomics.
Interdiscip Sci. 2024 Sep;16(3):579-592. doi: 10.1007/s12539-024-00611-4. Epub 2024 Mar 12.
4
PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments.
J Proteomics. 2014 Jun 25;106:151-61. doi: 10.1016/j.jprot.2014.04.018. Epub 2014 Apr 22.
5
Multiplexed peptide analysis using data-independent acquisition and Skyline.
Nat Protoc. 2015 Jun;10(6):887-903. doi: 10.1038/nprot.2015.055. Epub 2015 May 21.
6
Assessment of SRM, MRM(3) , and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer.
Proteomics. 2016 Aug;16(15-16):2193-205. doi: 10.1002/pmic.201500453. Epub 2016 Jun 27.
7
Rapidly Assessing the Quality of Targeted Proteomics Experiments through Monitoring Stable-Isotope Labeled Standards.
J Proteome Res. 2019 Feb 1;18(2):694-699. doi: 10.1021/acs.jproteome.8b00688. Epub 2018 Dec 19.
9
mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.
J Proteomics. 2015 Nov 3;129:108-120. doi: 10.1016/j.jprot.2015.09.013. Epub 2015 Sep 15.
10
In silico design of targeted SRM-based experiments.
BMC Bioinformatics. 2012;13 Suppl 16(Suppl 16):S8. doi: 10.1186/1471-2105-13-S16-S8. Epub 2012 Nov 5.

引用本文的文献

1
Data Independent Acquisition to Inform the Development of Targeted Proteomics Assays Using a Triple Quadrupole Mass Spectrometer.
J Proteome Res. 2025 Jun 6;24(6):2885-2891. doi: 10.1021/acs.jproteome.5c00016. Epub 2025 May 6.
2
Rapid assay development for low input targeted proteomics using a versatile linear ion trap.
Nat Commun. 2025 Apr 23;16(1):3794. doi: 10.1038/s41467-025-58757-8.
3
Rapid assay development for low input targeted proteomics using a versatile linear ion trap.
Res Sq. 2024 Jul 19:rs.3.rs-4702746. doi: 10.21203/rs.3.rs-4702746/v1.
4
6
A protein-protein interaction analysis tool for targeted cross-linking mass spectrometry.
Sci Rep. 2023 Dec 13;13(1):22103. doi: 10.1038/s41598-023-49663-4.
7
Assessment and Prediction of Human Proteotypic Peptide Stability for Proteomics Quantification.
Anal Chem. 2023 Sep 19;95(37):13746-13749. doi: 10.1021/acs.analchem.3c02269. Epub 2023 Sep 7.
8
Insight on physicochemical properties governing peptide MS1 response in HPLC-ESI-MS/MS: A deep learning approach.
Comput Struct Biotechnol J. 2023 Jul 22;21:3715-3727. doi: 10.1016/j.csbj.2023.07.027. eCollection 2023.
9
2019 Association of Biomolecular Resource Facilities Multi-Laboratory Data-Independent Acquisition Proteomics Study.
J Biomol Tech. 2023 Jun 2;34(2). doi: 10.7171/3fc1f5fe.9b78d780. eCollection 2023 Jul 1.
10
Mass spectrometry-based phosphoproteomics in clinical applications.
Trends Analyt Chem. 2023 Jun;163. doi: 10.1016/j.trac.2023.117066. Epub 2023 Apr 24.

本文引用的文献

1
Multiplexed peptide analysis using data-independent acquisition and Skyline.
Nat Protoc. 2015 Jun;10(6):887-903. doi: 10.1038/nprot.2015.055. Epub 2015 May 21.
2
Abundance-based classifier for the prediction of mass spectrometric peptide detectability upon enrichment (PPA).
Mol Cell Proteomics. 2015 Feb;14(2):430-40. doi: 10.1074/mcp.M114.044321. Epub 2014 Dec 3.
3
Targeted proteomics.
Nat Methods. 2013 Jan;10(1):19-22. doi: 10.1038/nmeth.2285.
4
Targeted quantitation of proteins by mass spectrometry.
Biochemistry. 2013 Jun 4;52(22):3797-806. doi: 10.1021/bi400110b. Epub 2013 Mar 27.
7
Rapid empirical discovery of optimal peptides for targeted proteomics.
Nat Methods. 2011 Nov 6;8(12):1041-3. doi: 10.1038/nmeth.1770.
8
CONSeQuence: prediction of reference peptides for absolute quantitative proteomics using consensus machine learning approaches.
Mol Cell Proteomics. 2011 Nov;10(11):M110.003384. doi: 10.1074/mcp.M110.003384. Epub 2011 Aug 3.
10
Global quantification of mammalian gene expression control.
Nature. 2011 May 19;473(7347):337-42. doi: 10.1038/nature10098.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验