Suppr超能文献

一种用于靶向交联质谱的蛋白质-蛋白质相互作用分析工具。

A protein-protein interaction analysis tool for targeted cross-linking mass spectrometry.

机构信息

Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.

Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA.

出版信息

Sci Rep. 2023 Dec 13;13(1):22103. doi: 10.1038/s41598-023-49663-4.

Abstract

Protein networking is critical to understanding the biological functions of proteins and the underlying mechanisms of disease. However, identifying physical protein-protein interactions (PPIs) can be challenging. To gain insights into target proteins that interact with a particular disease, we need to profile all the proteins involved in the disease beforehand. Although the cross-linking mass spectrometry (XL-MS) method is a representative approach to identify physical interactions between proteins, calculating theoretical mass values for application to targeted mass spectrometry can be difficult. To address this challenge, our research team developed PPIAT, a web application that integrates information on reviewed human proteins, protein-protein interactions, cross-linkers, enzymes, and modifications. PPIAT leverages publicly accessible databases such as STRING to identify interactomes associated with target proteins. Moreover, it autonomously computes the theoretical mass value, accounting for all potential cross-linking scenarios pertinent to the application of XL-MS in SRM analysis. The outputs generated by PPIAT can be concisely represented in terms of protein interaction probabilities, complemented by findings from alternative analytical tools like Prego. These comprehensive summaries enable researchers to customize the results according to specific experimental conditions. All functions of PPIAT are available for free on the web application, making it a valuable tool for researchers studying protein-protein interactions.

摘要

蛋白质网络对于理解蛋白质的生物学功能和疾病的潜在机制至关重要。然而,识别物理蛋白质-蛋白质相互作用(PPIs)可能具有挑战性。为了深入了解与特定疾病相互作用的靶蛋白,我们需要预先分析所有涉及该疾病的蛋白质。尽管交联质谱(XL-MS)方法是一种识别蛋白质之间物理相互作用的代表性方法,但计算适用于靶向质谱的理论质量值可能很困难。为了解决这一挑战,我们的研究团队开发了 PPIAT,这是一个网络应用程序,集成了已审查的人类蛋白质、蛋白质-蛋白质相互作用、交联剂、酶和修饰的信息。PPIAT 利用 STRING 等公开可用的数据库来识别与靶蛋白相关的相互作用组。此外,它还可以自主计算理论质量值,考虑到与 XL-MS 在 SRM 分析中的应用相关的所有潜在交联情况。PPIAT 生成的输出可以用蛋白质相互作用概率简洁地表示,并辅以 Prego 等替代分析工具的发现。这些全面的总结使研究人员能够根据特定的实验条件定制结果。PPIAT 的所有功能都可以在网络应用程序上免费使用,使其成为研究蛋白质-蛋白质相互作用的研究人员的宝贵工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4733/10719354/918d744921c7/41598_2023_49663_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验