Ha Jinkyung, Tsodikov Alexander
Int Med-Geriatric Medicine, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
Biometrics. 2015 Dec;71(4):941-9. doi: 10.1111/biom.12338. Epub 2015 Jun 23.
Misclassified causes of failures are a common phenomenon in competing risks survival data such as cancer mortality. We propose new estimating equations for a semiparametric proportional hazards (PH) model with misattributed causes of failures. Unlike other methods, the estimator does not require any parametric assumptions on baseline cause-specific hazard rates. It is shown that the estimators for regression coefficients are consistent and asymptotically normal. Simulation results support the theoretical analysis in finite samples. The methods are applied to analyze prostate cancer survival.
在诸如癌症死亡率等竞争风险生存数据中,错误分类的失败原因是一种常见现象。我们针对具有错误归因失败原因的半参数比例风险(PH)模型提出了新的估计方程。与其他方法不同,该估计器不需要对基线特定原因风险率做任何参数假设。结果表明,回归系数的估计器是一致且渐近正态的。模拟结果支持了有限样本下的理论分析。这些方法被应用于分析前列腺癌的生存情况。