Suppr超能文献

图论实际上告诉了我们关于静息态发作间期脑磁图癫痫活动的哪些信息。

What graph theory actually tells us about resting state interictal MEG epileptic activity.

作者信息

Niso Guiomar, Carrasco Sira, Gudín María, Maestú Fernando, Del-Pozo Francisco, Pereda Ernesto

机构信息

Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain ; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada.

Teaching General Hospital of Ciudad Real, Ciudad Real, Spain.

出版信息

Neuroimage Clin. 2015 May 23;8:503-15. doi: 10.1016/j.nicl.2015.05.008. eCollection 2015.

Abstract

Graph theory provides a useful framework to study functional brain networks from neuroimaging data. In epilepsy research, recent findings suggest that it offers unique insight into the fingerprints of this pathology on brain dynamics. Most studies hitherto have focused on seizure activity during focal epilepsy, but less is known about functional epileptic brain networks during interictal activity in frontal focal and generalized epilepsy. Besides, it is not clear yet which measures are most suitable to characterize these networks. To address these issues, we recorded magnetoencephalographic (MEG) data using two orthogonal planar gradiometers from 45 subjects from three groups (15 healthy controls (7 males, 24 ± 6 years), 15 frontal focal (8 male, 32 ± 16 years) and 15 generalized epileptic (6 male, 27 ± 7 years) patients) during interictal resting state with closed eyes. Then, we estimated the total and relative spectral power of the largest principal component of the gradiometers, and the degree of phase synchronization between each sensor site in the frequency range [0.5-40 Hz]. We further calculated a comprehensive battery of 15 graph-theoretic measures and used the affinity propagation clustering algorithm to elucidate the minimum set of them that fully describe these functional brain networks. The results show that differences in spectral power between the control and the other two groups have a distinctive pattern: generalized epilepsy presents higher total power for all frequencies except the alpha band over a widespread set of sensors; frontal focal epilepsy shows higher relative power in the beta band bilaterally in the fronto-central sensors. Moreover, all network indices can be clustered into three groups, whose exemplars are the global network efficiency, the eccentricity and the synchronizability. Again, the patterns of differences were clear: the brain network of the generalized epilepsy patients presented greater efficiency and lower eccentricity than the control subjects for the high frequency bands, without a clear topography. Besides, the frontal focal epileptic patients showed only reduced eccentricity for the theta band over fronto-temporal and central sensors. These outcomes indicate that functional epileptic brain networks are different to those of healthy subjects during interictal stage at rest, with a unique pattern of dissimilarities for each type of epilepsy. Further, when properly selected, three network indices suffice to provide a comprehensive description of these differences. Yet, since such uniqueness in the pattern of differences is also evident in the power spectrum, we conclude that the added value of the graph theory approach in this context should not be overestimated.

摘要

图论为从神经影像数据研究功能性脑网络提供了一个有用的框架。在癫痫研究中,最近的研究结果表明,它能为这种病理状态在脑动力学上的特征提供独特的见解。迄今为止,大多数研究都集中在局灶性癫痫发作期间的癫痫活动,但对于额叶局灶性癫痫和全身性癫痫发作间期的功能性癫痫脑网络了解较少。此外,目前尚不清楚哪些测量方法最适合表征这些网络。为了解决这些问题,我们使用两个正交平面梯度仪,记录了来自三组45名受试者(15名健康对照者(7名男性,24±6岁)、15名额叶局灶性癫痫患者(8名男性,32±16岁)和15名全身性癫痫患者(6名男性,27±7岁))闭眼休息时的发作间期脑磁图(MEG)数据。然后,我们估计了梯度仪最大主成分的总谱功率和相对谱功率,以及频率范围[0.5 - 40Hz]内每个传感器位点之间的相位同步程度。我们进一步计算了一组15种全面的图论测量指标,并使用亲和传播聚类算法来阐明能完全描述这些功能性脑网络的最小指标集。结果表明,对照组与其他两组之间的谱功率差异具有独特的模式:全身性癫痫在广泛的传感器组中,除α波段外,所有频率的总功率都更高;额叶局灶性癫痫在额中央传感器双侧的β波段显示出更高的相对功率。此外,所有网络指标可分为三组,其典型代表分别是全局网络效率、偏心率和同步性。差异模式再次清晰可见:全身性癫痫患者的脑网络在高频段表现出比对照受试者更高的效率和更低的偏心率,且无明显的拓扑结构。此外,额叶局灶性癫痫患者仅在额颞和中央传感器的θ波段显示出偏心率降低。这些结果表明,在发作间期休息时,功能性癫痫脑网络与健康受试者的不同,每种癫痫类型都有独特的差异模式。此外,当适当选择时,三个网络指标足以全面描述这些差异。然而,由于差异模式中的这种独特性在功率谱中也很明显,我们得出结论,在这种情况下图论方法的附加值不应被高估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cfe/4475779/45ad1d64ca5e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验