Du Jiejun, Dryden Ian L, Huang Xianzheng
J Am Stat Assoc. 2015 Jan 2;110(509):368-379. doi: 10.1080/01621459.2014.908779. Epub 2015 Apr 22.
We consider the problem of comparing sizes and shapes of objects when landmark data are prone to measurement error. We show that naive implementation of ordinary Procrustes analysis that ignores measurement error can compromise inference. To account for measurement error, we propose the conditional score method for matching configurations, which guarantees consistent inference under mild model assumptions. The effects of measurement error on inference from naive Procrustes analysis and the performance of the proposed method are illustrated via simulation and application in three real data examples. Supplementary materials for this article are available online.
当地标数据容易出现测量误差时,我们考虑比较物体大小和形状的问题。我们表明,普通普罗克拉斯分析的简单实现忽略测量误差可能会损害推断。为了考虑测量误差,我们提出了用于匹配配置的条件得分方法,该方法在温和的模型假设下保证一致的推断。通过模拟以及在三个实际数据示例中的应用,说明了测量误差对简单普罗克拉斯分析推断的影响以及所提出方法的性能。本文的补充材料可在线获取。