Suppr超能文献

通过生物地球化学过程建模推导森林火灾点火风险。

Deriving forest fire ignition risk with biogeochemical process modelling.

作者信息

Eastaugh C S, Hasenauer H

机构信息

Institute of Silviculture, Department of Forest and Soil Sciences, Universität für Bodenkultur, Peter-Jordan Str. 82, A-1190 Wien, Austria ; School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.

Institute of Silviculture, Department of Forest and Soil Sciences, Universität für Bodenkultur, Peter-Jordan Str. 82, A-1190 Wien, Austria.

出版信息

Environ Model Softw. 2014 May;55:132-142. doi: 10.1016/j.envsoft.2014.01.018.

Abstract

Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

摘要

气候影响树木生长,也会影响诸如野火发生频率等干扰机制。在过去的半个世纪里,欧洲阿尔卑斯山气温显著上升,但记录不完整使得难以确切地将高山野火与气候变化联系起来。森林组成和燃料载量对火灾点火风险的影响使情况变得复杂,而纯粹的气象风险指数并未考虑这一点。生物地球化学森林生长模型追踪几个可作为火灾点火风险代理指标的变量。本研究评估了生态生理模型BIOME - BGC的“土壤水分”和“不稳定凋落物碳”变量在预测火灾点火方面的有用性。一个简短的应用案例考察了1960年至2008年奥地利预定义区域的历史火灾发生趋势。结果表明,夏季火灾点火风险在很大程度上取决于土壤湿度低,而冬季火灾点火则与挥发性凋落物质量和大气干燥度有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3526/4461190/ebc9b87825ca/figs1.jpg

相似文献

1
Deriving forest fire ignition risk with biogeochemical process modelling.
Environ Model Softw. 2014 May;55:132-142. doi: 10.1016/j.envsoft.2014.01.018.
2
Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition.
J Environ Manage. 2014 Jun 15;139:88-96. doi: 10.1016/j.jenvman.2014.02.027. Epub 2014 Mar 27.
3
Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.
Ecol Appl. 2017 Mar;27(2):532-544. doi: 10.1002/eap.1463. Epub 2017 Feb 22.
4
Spatio-temporal trends in fire weather in the French Alps.
Sci Total Environ. 2017 Oct 1;595:801-817. doi: 10.1016/j.scitotenv.2017.04.027. Epub 2017 Apr 12.
5
Developing and testing models of the drivers of anthropogenic and lightning-caused wildfire ignitions in south-eastern Australia.
J Environ Manage. 2019 Apr 1;235:34-41. doi: 10.1016/j.jenvman.2019.01.055. Epub 2019 Jan 19.
6
A review of the main driving factors of forest fire ignition over Europe.
Environ Manage. 2013 Mar;51(3):651-62. doi: 10.1007/s00267-012-9961-z. Epub 2012 Oct 21.
7
Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia.
J Environ Manage. 2013 Jul 15;123:77-87. doi: 10.1016/j.jenvman.2013.03.011. Epub 2013 Apr 10.
8
Quantifying the human influence on fire ignition across the western USA.
Ecol Appl. 2016 Dec;26(8):2388-2399. doi: 10.1002/eap.1395. Epub 2016 Sep 30.
9
Improving fire season definition by optimized temporal modelling of daily human-caused ignitions.
J Environ Manage. 2018 Jul 1;217:90-99. doi: 10.1016/j.jenvman.2018.03.080. Epub 2018 Apr 5.
10
Fire as the dominant driver of central Canadian boreal forest carbon balance.
Nature. 2007 Nov 1;450(7166):89-92. doi: 10.1038/nature06272.

引用本文的文献

1
North Atlantic and the Barents Sea variability contribute to the 2023 extreme fire season in Canada.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2414241121. doi: 10.1073/pnas.2414241121. Epub 2024 Nov 18.
2
Forest fire vulnerability in Nepal's chure region: Investigating the influencing factors using generalized linear model.
Heliyon. 2024 Mar 26;10(7):e28525. doi: 10.1016/j.heliyon.2024.e28525. eCollection 2024 Apr 15.

本文引用的文献

1
Selecting the best performing fire weather indices for Austrian ecoregions.
Theor Appl Climatol. 2013;114(3-4):393-406. doi: 10.1007/s00704-013-0839-7. Epub 2013 Feb 12.
2
Carbon pools of an intact forest in Gabon.
Afr J Ecol. 2012 Dec;50(4):414-427. doi: 10.1111/j.1365-2028.2012.01337.x. Epub 2012 May 2.
4
Global pyrogeography: the current and future distribution of wildfire.
PLoS One. 2009;4(4):e5102. doi: 10.1371/journal.pone.0005102. Epub 2009 Apr 8.
5
The global distribution of ecosystems in a world without fire.
New Phytol. 2005 Feb;165(2):525-37. doi: 10.1111/j.1469-8137.2004.01252.x.
6
Understanding a flammable planet - climate, fire and global vegetation patterns.
New Phytol. 2005 Feb;165(2):341-5. doi: 10.1111/j.1469-8137.2004.01301.x.
8
Modeling effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains.
Tree Physiol. 2003 Aug;23(11):735-46. doi: 10.1093/treephys/23.11.735.
9
Climate-driven increases in global terrestrial net primary production from 1982 to 1999.
Science. 2003 Jun 6;300(5625):1560-3. doi: 10.1126/science.1082750.
10
Climate change and forest fires.
Sci Total Environ. 2000 Nov 15;262(3):221-9. doi: 10.1016/s0048-9697(00)00524-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验