Suppr超能文献

受野火影响地区的中分辨率成像光谱仪(MODIS)Aqua和Terra卫星归一化植被指数及增强植被指数时间序列的多重分形分析

Multifractal Analysis of MODIS Aqua and Terra Satellite Time Series of Normalized Difference Vegetation Index and Enhanced Vegetation Index of Sites Affected by Wildfires.

作者信息

Ba Rui, Lovallo Michele, Song Weiguo, Zhang Hui, Telesca Luciano

机构信息

School of National Security, People's Public Security University of China, Beijing 100038, China.

ARPAB, 85100 Potenza, Italy.

出版信息

Entropy (Basel). 2022 Nov 29;24(12):1748. doi: 10.3390/e24121748.

Abstract

The MODIS Aqua and Terra Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) time series acquired during nearly two decades (2000 to 2020) covering the area burned by the Camp Fire (California) in 2018 is investigated in this study by using the multifractal detrended fluctuation analysis in relation to the recovery process of vegetation after fire. In 2008, the same area was partially burned by two wildfires, the BTU Lightning Complex Fire and the Humboldt Fire. Our results indicate that all vegetation index time series are featured by six- and twelve-month modulating periodicities, with a larger spectral content at longer periods for two-fire-affected sites. Furthermore, two fires cause an increase of the persistence of the NDVI and EVI time series and an increase of the complexity, suggesting that the recovery process of vegetation dynamics of fire-affected sites is characterized by positive feedback mechanisms, driving the growth-generating phenomena, which become even more effective in those sites affected by two fires.

摘要

本研究利用多重分形去趋势波动分析方法,对2000年至2020年近二十年间获取的、覆盖2018年坎普大火(加利福尼亚州)烧毁区域的中分辨率成像光谱仪(MODIS)Aqua和Terra的归一化植被指数(NDVI)及增强植被指数(EVI)时间序列进行了研究,以探讨火灾后植被的恢复过程。2008年,同一区域曾遭受两场野火(BTU闪电复合火灾和洪堡火灾)的部分烧毁。我们的研究结果表明,所有植被指数时间序列均具有6个月和12个月的调制周期,且对于受两场火灾影响的区域,较长周期的光谱含量更大。此外,两场火灾导致NDVI和EVI时间序列的持续性增加以及复杂性提高,这表明受火灾影响区域的植被动态恢复过程具有正反馈机制,推动了生长生成现象,在受两场火灾影响的区域这种机制更为有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4a0/9777580/c03b51c518c6/entropy-24-01748-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验