Ramanantoanina Harry, Sahnoun Mohammed, Barbiero Andrea, Ferbinteanu Marilena, Cimpoesu Fanica
Department of Chemistry of the University of Fribourg (Switzerland), Chemin du Musée 9, 1700 Fribourg, Switzerland.
Phys Chem Chem Phys. 2015 Jul 28;17(28):18547-57. doi: 10.1039/c5cp02349a.
Ligand field density functional theory (LFDFT) is a methodology consisting of non-standard handling of DFT calculations and post-computation analysis, emulating the ligand field parameters in a non-empirical way. Recently, the procedure was extended for two-open-shell systems, with relevance for inter-shell transitions in lanthanides, of utmost importance in understanding the optical and magnetic properties of rare-earth materials. Here, we expand the model to the calculation of intensities of f → d transitions, enabling the simulation of spectral profiles. We focus on Eu(2+)-based systems: this lanthanide ion undergoes many dipole-allowed transitions from the initial 4f(7)((8)S7/2) state to the final 4f(6)5d(1) ones, considering the free ion and doped materials. The relativistic calculations showed a good agreement with experimental data for a gaseous Eu(2+) ion, producing reliable Slater-Condon and spin-orbit coupling parameters. The Eu(2+) ion-doped fluorite-type lattices, CaF2:Eu(2+) and SrCl2:Eu(2+), in sites with octahedral symmetry, are studied in detail. The related Slater-Condon and spin-orbit coupling parameters from the doped materials are compared to those for the free ion, revealing small changes for the 4f shell side and relatively important shifts for those associated with the 5d shell. The ligand field scheme, in Wybourne parameterization, shows a good agreement with the phenomenological interpretation of the experiment. The non-empirical computed parameters are used to calculate the energy and intensity of the 4f(7)-4f(6)5d(1) transitions, rendering a realistic convoluted spectrum.
配体场密度泛函理论(LFDFT)是一种由对密度泛函理论(DFT)计算的非标准处理和计算后分析组成的方法,它以非经验的方式模拟配体场参数。最近,该方法被扩展到双开壳层体系,这与镧系元素的壳层间跃迁相关,对于理解稀土材料的光学和磁学性质至关重要。在这里,我们将该模型扩展到f→d跃迁强度的计算,从而能够模拟光谱轮廓。我们专注于基于Eu(2+)的体系:考虑到自由离子和掺杂材料,这种镧系离子会经历许多从初始的4f(7)((8)S7/2)态到最终的4f(6)5d(1)态的允许偶极跃迁。相对论计算表明,对于气态Eu(2+)离子,计算结果与实验数据吻合良好,得出了可靠的斯莱特 - 康登(Slater-Condon)和自旋 - 轨道耦合参数。我们详细研究了Eu(2+)离子掺杂的萤石型晶格CaF2:Eu(2+)和SrCl2:Eu(2+),它们处于具有八面体对称性的位点。将掺杂材料的相关斯莱特 - 康登和自旋 - 轨道耦合参数与自由离子的进行比较,结果显示4f壳层方面变化较小,而与5d壳层相关的参数则有相对较大的偏移。以怀伯恩(Wybourne)参数化表示的配体场方案与实验的唯象解释吻合良好。使用非经验计算的参数来计算4f(7)-4f(6)5d(1)跃迁的能量和强度,从而得到一个逼真的卷积光谱。