Ramanantoanina Harry, Daul Claude
Paul Scherrer Institute, CH-5232, Villigen, Switzerland.
Department of chemistry, University of Fribourg, Chemin du musée 9, CH-1700, Fribourg, Switzerland.
J Mol Model. 2017 Aug;23(8):243. doi: 10.1007/s00894-017-3413-x. Epub 2017 Jul 26.
The ligand field density functional theory (LFDFT) algorithm is extended to treat the electronic structure and properties of systems with three-open-shell electron configurations, exemplified in this work by the calculation of the core and semi-core 1s, 2s, and 3s one-electron excitations in compounds containing transition metal ions. The work presents a model to non-empirically resolve the multiplet energy levels arising from the three-open-shell systems of non-equivalent ns, 3d, and 4p electrons and to calculate the oscillator strengths corresponding to the electric-dipole 3d → ns 3d 4p transitions, with n = 1, 2, 3 and m = 0, 1, 2, …, 10 involved in the s electron excitation process. Using the concept of ligand field, the Slater-Condon integrals, the spin-orbit coupling constants, and the parameters of the ligand field potential are determined from density functional theory (DFT). Therefore, a theoretical procedure using LFDFT is established illustrating the spectroscopic details at the atomic scale that can be valuable in the analysis and characterization of the electronic spectra obtained from X-ray absorption fine structure or electron energy loss spectroscopies.
配体场密度泛函理论(LFDFT)算法被扩展用于处理具有三个开壳层电子构型的体系的电子结构和性质,在这项工作中通过计算含过渡金属离子化合物中核心和半核心的1s、2s和3s单电子激发来举例说明。这项工作提出了一个模型,用于非经验地解析由非等效ns、3d和4p电子的三个开壳层体系产生的多重能级,并计算与电偶极3d→ns 3d 4p跃迁相对应的振子强度,其中n = 1、2、3且m = 0、1、2、…、10参与s电子激发过程。利用配体场的概念,斯莱特 -康登积分、自旋 -轨道耦合常数以及配体场势的参数由密度泛函理论(DFT)确定。因此,建立了一个使用LFDFT的理论程序,阐明了原子尺度上的光谱细节,这对于分析和表征从X射线吸收精细结构或电子能量损失谱获得的电子光谱可能是有价值的。