Ramanantoanina Harry
Paul Scherrer Institute, CH-5232 Villigen, Switzerland.
Phys Chem Chem Phys. 2017 Dec 13;19(48):32481-32491. doi: 10.1039/c7cp06198f.
Methodological concepts are reported for the calculation, without empirical parameters, of multiplet energy levels and ligand-field effects associated with three-open-shell 4f5f6d electron configurations, and for the modeling of X-ray absorption spectra in relation to intra-atomic 5f → 4f5f6d electron transitions. A density functional theory (DFT) method is used for the determination of the electronic structure. An effective ligand-field Hamiltonian is also used to incorporate many body effects and corrections via the configuration interaction algorithm within the active space of Kohn-Sham orbitals with dominant actinide 4f, 5f and 6d characters. The theoretical method ensures a parameter-free ligand-field model, which will be implemented in the Amsterdam density functional (ADF) program package as part of the available and automated ligand-field density functional theory (LFDFT) routine. The theoretical method is illustrated with examples for applications: U in the free ion and U in bulk UO by means of the molecular (UO) cluster. The DFT calculations are performed at different levels of the DFT functional, from which the LFDFT parameters such as Slater-Condon integrals, spin-orbit coupling constants and ligand-field potential (represented within the Wybourne formalism) are emulated. The comparison with available experimental data is good. Therefore, a non-empirical ligand-field treatment of the 4f5f6d configuration is established illustrating the spectroscopic details of the 4f core-electron excitation, which can be valuable for further understanding and prediction of the spectral profiles of actinide N-edge X-ray absorption spectroscopy.
本文报道了一种无需经验参数即可计算与三开壳层4f5f6d电子构型相关的多重能级和配体场效应的方法概念,以及用于模拟与原子内5f→4f5f6d电子跃迁相关的X射线吸收光谱的方法。采用密度泛函理论(DFT)方法确定电子结构。还使用了一种有效的配体场哈密顿量,通过在具有主要锕系元素4f、5f和6d特征的Kohn-Sham轨道的活性空间内的组态相互作用算法,纳入多体效应和修正。该理论方法确保了一个无参数的配体场模型,该模型将作为可用的自动配体场密度泛函理论(LFDFT)例程的一部分在阿姆斯特丹密度泛函(ADF)程序包中实现。通过分子(UO)簇的例子说明了该理论方法在应用中的情况:自由离子中的U和块状UO中的U。在不同的DFT泛函水平上进行DFT计算,从中模拟LFDFT参数,如Slater-Condon积分、自旋轨道耦合常数和配体场势(用Wybourne形式表示)。与现有实验数据的比较结果良好。因此,建立了对4f5f6d构型的非经验配体场处理方法,阐明了4f芯电子激发的光谱细节,这对于进一步理解和预测锕系元素N边X射线吸收光谱的光谱轮廓可能具有重要价值。