Suppr超能文献

相似文献

1
Miniature, minimally invasive, tunable endoscope for investigation of the middle ear.
Biomed Opt Express. 2015 May 27;6(6):2246-57. doi: 10.1364/BOE.6.002246. eCollection 2015 Jun 1.
4
Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography.
J Biophotonics. 2014 Jun;7(6):434-41. doi: 10.1002/jbio.201200186. Epub 2012 Dec 7.
5
Miniature adjustable-focus endoscope with a solid electrically tunable lens.
Opt Express. 2015 Aug 10;23(16):20582-92. doi: 10.1364/OE.23.020582.
6
Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review.
Otolaryngol Head Neck Surg. 2018 Sep;159(3):424-438. doi: 10.1177/0194599818775711. Epub 2018 May 22.
8
Reflectance confocal endomicroscope with optical axial scanning for in vivo imaging of the oral mucosa.
Biomed Opt Express. 2014 Oct 1;5(11):3781-91. doi: 10.1364/BOE.5.003781. eCollection 2014 Nov 1.
9
Adaptive optical probe design for optical coherence tomography and microscopy using tunable optics.
Opt Express. 2013 Jan 28;21(2):1567-73. doi: 10.1364/OE.21.001567.

引用本文的文献

1
Technologies for depth scanning in miniature optical imaging systems [Invited].
Biomed Opt Express. 2023 Nov 29;14(12):6542-6562. doi: 10.1364/BOE.507078. eCollection 2023 Dec 1.
2
Electronic frequency shifting enables long, variable working distance optical coherence tomography.
Biomed Opt Express. 2023 Nov 29;14(12):6579-6591. doi: 10.1364/BOE.504034. eCollection 2023 Dec 1.
3
Axisymmetrical resonance modes in an electrowetting optical lens.
Appl Phys Lett. 2023 May 15;122(20):201106. doi: 10.1063/5.0141787. Epub 2023 May 17.
5
Full-field swept-source optical coherence tomography and neural tissue classification for deep brain imaging.
J Biophotonics. 2020 Feb;13(2):e201960083. doi: 10.1002/jbio.201960083. Epub 2019 Dec 2.
6
Extratympanic Observation of Middle and Inner Ear Structures in Rodents Using Optical Coherence Tomography.
Clin Exp Otorhinolaryngol. 2020 May;13(2):106-112. doi: 10.21053/ceo.2019.00766. Epub 2019 Nov 1.
7
Revealing the morphology and function of the cochlea and middle ear with optical coherence tomography.
Quant Imaging Med Surg. 2019 May;9(5):858-881. doi: 10.21037/qims.2019.05.10.
8
Lidar system with nonmechanical electrowetting-based wide-angle beam steering.
Opt Express. 2019 Feb 18;27(4):4404-4415. doi: 10.1364/OE.27.004404.
9
Scanning optical coherence tomography probe for in vivo imaging and displacement measurements in the cochlea.
Biomed Opt Express. 2019 Feb 1;10(2):1032-1043. doi: 10.1364/BOE.10.001032.

本文引用的文献

1
Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography.
Quant Imaging Med Surg. 2015 Feb;5(1):69-77. doi: 10.3978/j.issn.2223-4292.2014.11.32.
3
Vibration of the organ of Corti within the cochlear apex in mice.
J Neurophysiol. 2014 Sep 1;112(5):1192-204. doi: 10.1152/jn.00306.2014. Epub 2014 Jun 11.
4
Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements.
Hear Res. 2013 Jul;301:193-200. doi: 10.1016/j.heares.2013.04.001. Epub 2013 Apr 12.
5
In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography.
Biomed Opt Express. 2013 Feb 1;4(2):230-40. doi: 10.1364/BOE.4.00230. Epub 2013 Jan 15.
6
Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry.
J Biomed Opt. 2012 Jun;17(6):060505. doi: 10.1117/1.JBO.17.6.060505.
7
Noninvasive in vivo optical detection of biofilm in the human middle ear.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9529-34. doi: 10.1073/pnas.1201592109. Epub 2012 May 29.
10
Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear.
Biomed Opt Express. 2010 Oct 7;1(4):1104-1116. doi: 10.1364/BOE.1.001104.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验