Suppr超能文献

微型光学成像系统中的深度扫描技术[特邀报告]

Technologies for depth scanning in miniature optical imaging systems [Invited].

作者信息

Liu Yuehan, Zhang Haolin, Li Xingde

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA.

出版信息

Biomed Opt Express. 2023 Nov 29;14(12):6542-6562. doi: 10.1364/BOE.507078. eCollection 2023 Dec 1.

Abstract

Biomedical optical imaging has found numerous clinical and research applications. For achieving 3D imaging, depth scanning presents the most significant challenge, particularly in miniature imaging devices. This paper reviews the state-of-art technologies for depth scanning in miniature optical imaging systems, which include two general approaches: 1) physically shifting part of or the entire imaging device to allow imaging at different depths and 2) optically changing the focus of the imaging optics. We mainly focus on the second group of methods, introducing a wide variety of tunable microlenses, covering the underlying physics, actuation mechanisms, and imaging performance. Representative applications in clinical and neuroscience research are briefly presented. Major challenges and future perspectives of depth/focus scanning technologies for biomedical optical imaging are also discussed.

摘要

生物医学光学成像已在众多临床和研究应用中得到应用。为了实现三维成像,深度扫描带来了最严峻的挑战,尤其是在微型成像设备中。本文综述了微型光学成像系统中深度扫描的最新技术,包括两种一般方法:1)物理移动部分或整个成像设备以允许在不同深度成像,以及2)光学改变成像光学器件的焦点。我们主要关注第二类方法,介绍了各种各样的可调微透镜,涵盖其基础物理、驱动机制和成像性能。还简要介绍了在临床和神经科学研究中的代表性应用。同时也讨论了生物医学光学成像深度/焦点扫描技术的主要挑战和未来展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ab/10898578/734b1863a9bc/boe-14-12-6542-g001.jpg

相似文献

1
Technologies for depth scanning in miniature optical imaging systems [Invited].
Biomed Opt Express. 2023 Nov 29;14(12):6542-6562. doi: 10.1364/BOE.507078. eCollection 2023 Dec 1.
2
MEMS Enabled Miniature Two-Photon Microscopy for Biomedical Imaging.
Micromachines (Basel). 2023 Feb 17;14(2):470. doi: 10.3390/mi14020470.
4
Liquid Tunable Microlenses based on MEMS techniques.
J Phys D Appl Phys. 2013 Aug 14;46(32):323001. doi: 10.1088/0022-3727/46/32/323001.
5
Biomimetic optics: liquid-based optical elements imitating the eye functionality.
Philos Trans A Math Phys Eng Sci. 2020 Mar 20;378(2167):20190442. doi: 10.1098/rsta.2019.0442. Epub 2020 Feb 3.
6
Miniature bioinspired artificial compound eyes: microfabrication technologies, photodetection and applications.
Front Bioeng Biotechnol. 2024 Feb 16;12:1342120. doi: 10.3389/fbioe.2024.1342120. eCollection 2024.
8
Miniature, minimally invasive, tunable endoscope for investigation of the middle ear.
Biomed Opt Express. 2015 May 27;6(6):2246-57. doi: 10.1364/BOE.6.002246. eCollection 2015 Jun 1.
9
MEMS-actuated metasurface Alvarez lens.
Microsyst Nanoeng. 2020 Oct 5;6:79. doi: 10.1038/s41378-020-00190-6. eCollection 2020.
10
Point-of-care optical devices in clinical imaging and screening: A review on the state of the art.
J Biophotonics. 2023 Jun;16(6):e202200386. doi: 10.1002/jbio.202200386. Epub 2023 Mar 23.

引用本文的文献

1
Quantitative assessment of retinal attenuation and backscattering in OCT imaging using iterative layer-based analysis.
Biomed Opt Express. 2025 Jun 16;16(7):2808-2823. doi: 10.1364/BOE.563121. eCollection 2025 Jul 1.
2
Magnetically actuatable 3D-printed endoscopic microsystems.
Commun Eng. 2025 Apr 9;4(1):69. doi: 10.1038/s44172-025-00403-8.
3
Adaptive contour-tracking to aid wide-field swept-source optical coherence tomography imaging of large objects with uneven surface topology.
Biomed Opt Express. 2024 Jul 29;15(8):4891-4908. doi: 10.1364/BOE.533399. eCollection 2024 Aug 1.
4
High-speed, long-range and wide-field OCT for in vivo 3D imaging of the oral cavity achieved by a 600 kHz swept source laser.
Biomed Opt Express. 2024 Jun 27;15(7):4365-4380. doi: 10.1364/BOE.528287. eCollection 2024 Jul 1.
5
Novel Techniques in Microscopy: introduction to the feature issue.
Biomed Opt Express. 2024 Feb 22;15(3):1813-1814. doi: 10.1364/BOE.521511. eCollection 2024 Mar 1.

本文引用的文献

1
Large-scale two-photon calcium imaging in freely moving mice.
Cell. 2022 Mar 31;185(7):1240-1256.e30. doi: 10.1016/j.cell.2022.02.017. Epub 2022 Mar 18.
2
Minimizing OCT quantification error via a surface-tracking imaging probe.
Biomed Opt Express. 2021 Jun 10;12(7):3992-4002. doi: 10.1364/BOE.423233. eCollection 2021 Jul 1.
3
Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging.
Nat Methods. 2021 Jan;18(1):46-49. doi: 10.1038/s41592-020-01024-z. Epub 2021 Jan 6.
4
Pupil plane actuated remote focusing for rapid focal depth control.
Opt Express. 2020 Aug 31;28(18):26407-26413. doi: 10.1364/OE.402787.
5
Method of the Year 2018: Imaging in freely behaving animals.
Nat Methods. 2019 Jan;16(1):1. doi: 10.1038/s41592-018-0292-8.
6
A biopsy-needle compatible varifocal multiphoton rigid probe for depth-resolved optical biopsy.
J Biophotonics. 2019 Jan;12(1):e201800229. doi: 10.1002/jbio.201800229. Epub 2018 Sep 5.
8
Optical camera with liquid crystal autofocus lens.
Opt Express. 2017 Nov 27;25(24):29945-29964. doi: 10.1364/OE.25.029945.
9
Fast varifocal two-photon microendoscope for imaging neuronal activity in the deep brain.
Biomed Opt Express. 2017 Aug 10;8(9):4049-4060. doi: 10.1364/BOE.8.004049. eCollection 2017 Sep 1.
10
Electrically tunable fluidic lens imaging system for laparoscopic fluorescence-guided surgery.
Biomed Opt Express. 2017 Jun 13;8(7):3232-3247. doi: 10.1364/BOE.8.003232. eCollection 2017 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验