Suppr超能文献

超晶体的纳米接触显微镜术。

Nano-contact microscopy of supracrystals.

作者信息

Sweetman Adam, Goubet Nicolas, Lekkas Ioannis, Pileni Marie Paule, Moriarty Philip

机构信息

The School of Physics and Astronomy, The University of Nottingham, Nottingham, NG7 2RD, U.K.

Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, Monaris, F-75005, Paris, France ; CNRS, UMR 8233, Monaris, F-75005, Paris, France.

出版信息

Beilstein J Nanotechnol. 2015 May 29;6:1229-36. doi: 10.3762/bjnano.6.126. eCollection 2015.

Abstract

BACKGROUND

Highly ordered three-dimensional colloidal crystals (supracrystals) comprised of 7.4 nm diameter Au nanocrystals (with a 5% size dispersion) have been imaged and analysed using a combination of scanning tunnelling microscopy and dynamic force microscopy.

RESULTS

By exploring the evolution of both the force and tunnel current with respect to tip-sample separation, we arrive at the surprising finding that single nanocrystal resolution is readily obtained in tunnelling microscopy images acquired more than 1 nm into the repulsive (i.e., positive force) regime of the probe-nanocrystal interaction potential. Constant height force microscopy has been used to map tip-sample interactions in this regime, revealing inhomogeneities which arise from the convolution of the tip structure with the ligand distribution at the nanocrystal surface.

CONCLUSION

Our combined STM-AFM measurements show that the contrast mechanism underpinning high resolution imaging of nanoparticle supracrystals involves a form of nanoscale contact imaging, rather than the through-vacuum tunnelling which underpins traditional tunnelling microscopy and spectroscopy.

摘要

背景

由直径7.4纳米的金纳米晶体(尺寸分散度为5%)组成的高度有序的三维胶体晶体(超晶体)已通过扫描隧道显微镜和动态力显微镜相结合的方法进行成像和分析。

结果

通过研究力和隧道电流随针尖 - 样品间距的变化,我们得出了一个惊人的发现,即在超过1纳米进入探针 - 纳米晶体相互作用势的排斥(即正力)区域所获取的隧道显微镜图像中,很容易获得单个纳米晶体的分辨率。在该区域已使用恒高力显微镜来绘制针尖 - 样品相互作用,揭示了由针尖结构与纳米晶体表面配体分布的卷积所产生的不均匀性。

结论

我们的扫描隧道显微镜 - 原子力显微镜联合测量表明,纳米颗粒超晶体高分辨率成像的对比度机制涉及一种纳米级接触成像形式,而不是传统隧道显微镜和光谱学所基于的通过真空隧道效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd99/4462851/987a0008058d/Beilstein_J_Nanotechnol-06-1229-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验