Suppr超能文献

截短的α-溶血素孔对核碱基的识别

Nucleobase Recognition by Truncated α-Hemolysin Pores.

作者信息

Ayub Mariam, Stoddart David, Bayley Hagan

机构信息

Department of Chemistry, University of Oxford , Oxford, OX1 3TA, United Kingdom.

出版信息

ACS Nano. 2015 Aug 25;9(8):7895-903. doi: 10.1021/nn5060317. Epub 2015 Jul 28.

Abstract

The α-hemolysin (αHL) protein nanopore has been investigated previously as a base detector for the strand sequencing of DNA and RNA. Recent findings have suggested that shorter pores might provide improved base discrimination. New work has also shown that truncated-barrel mutants (TBM) of αHL form functional pores in lipid bilayers. Therefore, we tested TBM pores for the ability to recognize bases in DNA strands immobilized within them. In the case of TBMΔ6, in which the barrel is shortened by ∼16 Å, one of the three recognition sites found in the wild-type pore, R1, was almost eliminated. With further mutagenesis (Met113 → Gly), R1 was completely removed, demonstrating that TBM pores can mediate sharpened recognition. Remarkably, a second mutant of TBMΔ6 (Met113 → Phe) was able to bind the positively charged β-cyclodextrin, am7βCD, unusually tightly, permitting the continuous recognition of individual nucleoside monophosphates, which would be required for exonuclease sequencing mediated by nanopore base identification.

摘要

α-溶血素(αHL)蛋白纳米孔此前已被研究用作DNA和RNA链测序的碱基检测器。最近的研究结果表明,较短的孔可能会改善碱基识别。新的研究还表明,αHL的截短桶状突变体(TBM)在脂质双层中形成功能性孔。因此,我们测试了TBM孔识别固定在其中的DNA链中碱基的能力。在TBMΔ6的情况下,其桶状结构缩短了约16 Å,野生型孔中发现的三个识别位点之一R1几乎消失。通过进一步诱变(Met113 → Gly),R1被完全去除,表明TBM孔可以介导更敏锐的识别。值得注意的是,TBMΔ6的第二个突变体(Met113 → Phe)能够异常紧密地结合带正电荷的β-环糊精am7βCD,从而允许连续识别单个核苷单磷酸,这是纳米孔碱基识别介导的核酸外切酶测序所必需的。

相似文献

1
Nucleobase Recognition by Truncated α-Hemolysin Pores.
ACS Nano. 2015 Aug 25;9(8):7895-903. doi: 10.1021/nn5060317. Epub 2015 Jul 28.
2
High-throughput optical sensing of nucleic acids in a nanopore array.
Nat Nanotechnol. 2015 Nov;10(11):986-91. doi: 10.1038/nnano.2015.189. Epub 2015 Aug 31.
3
Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore.
Nano Lett. 2010 Sep 8;10(9):3633-7. doi: 10.1021/nl101955a.
4
Hetero-oligomeric MspA pores in Mycobacterium smegmatis.
FEMS Microbiol Lett. 2016 Apr;363(7). doi: 10.1093/femsle/fnw046. Epub 2016 Feb 23.
5
Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8165-70. doi: 10.1073/pnas.0914229107. Epub 2010 Apr 16.
6
An analysis of mismatched duplex DNA unzipping through a bacterial nanopore.
Biochem Cell Biol. 2004 Jun;82(3):407-12. doi: 10.1139/o04-005.

引用本文的文献

1
Graphene Nanopore Fabrication and Applications.
Int J Mol Sci. 2025 Feb 17;26(4):1709. doi: 10.3390/ijms26041709.
2
Hetero-Oligomeric Protein Pores for Single-Molecule Sensing.
J Membr Biol. 2024 Dec 19. doi: 10.1007/s00232-024-00331-2.
4
Beta-Barrel Nanopores as Diagnostic Sensors: An Engineering Perspective.
Biosensors (Basel). 2024 Jul 16;14(7):345. doi: 10.3390/bios14070345.
6
Engineering Biological Nanopore Approaches toward Protein Sequencing.
ACS Nano. 2023 Sep 12;17(17):16369-16395. doi: 10.1021/acsnano.3c05628. Epub 2023 Jul 25.
7
Portable nanopore-sequencing technology: Trends in development and applications.
Front Microbiol. 2023 Feb 1;14:1043967. doi: 10.3389/fmicb.2023.1043967. eCollection 2023.
8
Effect of Electrolyte Concentration and Pore Size on Ion Current Rectification Inversion.
ACS Meas Sci Au. 2022 Jun 15;2(3):271-277. doi: 10.1021/acsmeasuresciau.1c00062. Epub 2022 Feb 28.
9
Challenges and approaches to studying pore-forming proteins.
Biochem Soc Trans. 2021 Dec 17;49(6):2749-2765. doi: 10.1042/BST20210706.
10
Nanopore sensors for viral particle quantification: current progress and future prospects.
Bioengineered. 2021 Dec;12(2):9189-9215. doi: 10.1080/21655979.2021.1995991.

本文引用的文献

1
Successful test launch for nanopore sequencing.
Nat Methods. 2015 Apr;12(4):303-4. doi: 10.1038/nmeth.3327.
2
Improved data analysis for the MinION nanopore sequencer.
Nat Methods. 2015 Apr;12(4):351-6. doi: 10.1038/nmeth.3290. Epub 2015 Feb 16.
3
Decoding long nanopore sequencing reads of natural DNA.
Nat Biotechnol. 2014 Aug;32(8):829-33. doi: 10.1038/nbt.2950. Epub 2014 Jun 25.
4
Functional truncated membrane pores.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2425-30. doi: 10.1073/pnas.1312976111. Epub 2014 Jan 27.
5
Nanopore-based identification of individual nucleotides for direct RNA sequencing.
Nano Lett. 2013;13(12):6144-50. doi: 10.1021/nl403469r. Epub 2013 Nov 13.
6
Individual RNA base recognition in immobilized oligonucleotides using a protein nanopore.
Nano Lett. 2012 Nov 14;12(11):5637-43. doi: 10.1021/nl3027873. Epub 2012 Oct 19.
7
Genome sequencing. Search for pore-fection.
Science. 2012 May 4;336(6081):534-7. doi: 10.1126/science.336.6081.534.
8
9
Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision.
Nat Biotechnol. 2012 Feb 14;30(4):344-8. doi: 10.1038/nbt.2147.
10
Nucleotide discrimination with DNA immobilized in the MspA nanopore.
PLoS One. 2011;6(10):e25723. doi: 10.1371/journal.pone.0025723. Epub 2011 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验