Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA.
Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA.
Sci Adv. 2024 Nov 8;10(45):eadp8134. doi: 10.1126/sciadv.adp8134. Epub 2024 Nov 6.
Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution.
生物纳米孔由于其单分子灵敏度,在分子传感中得到了越来越多的应用。由于全氟辛烷酸和全氟辛烷磺酸等全氟和多氟烷基物质(PFAS)在环境中的普遍性和毒性,对其进行检测至关重要。在这里,我们研究了 PFAS 与四种环糊精(α-、β-、γ-和 2-羟丙基-γ-CD)在α-溶血素纳米孔内的选择性相互作用。我们证明,PFAS 分子可以通过与纳米孔中的 γ-CD 相互作用而被电化学感应。使用具有增加的空间位阻的 HP-γ-CDs,我们可以识别出全氟烷基羧酸和全氟烷基磺酸家族的同系物,并在饮用水中以 0.4 至 2 ppm 的水平检测到常见的 PFAS,通过样品预浓缩进一步降低到 400ppt。分子动力学模拟揭示了 PFAS-CD 相互作用的潜在化学机制。这些见解为基于纳米孔的原位检测铺平了道路,有望在防范 PFAS 污染方面保护环境。