Rocher Solen, Jean Martine, Castonguay Yves, Belzile François
Centre de Recherche et de Développement sur les Sols et les Grandes Cultures, Agriculture et agroalimentaire Canada, Quebec City (QC), Canada.
Département de Phytologie and Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City (QC), Canada.
PLoS One. 2015 Jun 26;10(6):e0131918. doi: 10.1371/journal.pone.0131918. eCollection 2015.
Genotyping-by-sequencing (GBS) is a relatively low-cost high throughput genotyping technology based on next generation sequencing and is applicable to orphan species with no reference genome. A combination of genome complexity reduction and multiplexing with DNA barcoding provides a simple and affordable way to resolve allelic variation between plant samples or populations. GBS was performed on ApeKI libraries using DNA from 48 genotypes each of two heterogeneous populations of tetraploid alfalfa (Medicago sativa spp. sativa): the synthetic cultivar Apica (ATF0) and a derived population (ATF5) obtained after five cycles of recurrent selection for superior tolerance to freezing (TF). Nearly 400 million reads were obtained from two lanes of an Illumina HiSeq 2000 sequencer and analyzed with the Universal Network-Enabled Analysis Kit (UNEAK) pipeline designed for species with no reference genome. Following the application of whole dataset-level filters, 11,694 single nucleotide polymorphism (SNP) loci were obtained. About 60% had a significant match on the Medicago truncatula syntenic genome. The accuracy of allelic ratios and genotype calls based on GBS data was directly assessed using 454 sequencing on a subset of SNP loci scored in eight plant samples. Sequencing depth in this study was not sufficient for accurate tetraploid allelic dosage, but reliable genotype calls based on diploid allelic dosage were obtained when using additional quality filtering. Principal Component Analysis of SNP loci in plant samples revealed that a small proportion (<5%) of the genetic variability assessed by GBS is able to differentiate ATF0 and ATF5. Our results confirm that analysis of GBS data using UNEAK is a reliable approach for genome-wide discovery of SNP loci in outcrossed polyploids.
简化基因组测序(GBS)是一种基于新一代测序的相对低成本的高通量基因分型技术,适用于没有参考基因组的非模式物种。基因组复杂性降低与DNA条形码多重分析相结合,为解析植物样本或群体之间的等位基因变异提供了一种简单且经济实惠的方法。使用来自四倍体苜蓿(紫花苜蓿苜蓿亚种)两个异质群体中每个群体的48个基因型的DNA,对ApeKI文库进行GBS分析:合成品种Apica(ATF0)和经过五个轮回选择以获得优异抗冻性(TF)后得到的衍生群体(ATF5)。从Illumina HiSeq 2000测序仪的两条泳道中获得了近4亿条读数,并使用为没有参考基因组的物种设计的通用网络分析工具包(UNEAK)管道进行分析。应用全数据集水平的筛选后,获得了11,694个单核苷酸多态性(SNP)位点。约60%在蒺藜苜蓿的同线基因组上有显著匹配。基于GBS数据的等位基因比率和基因型调用的准确性,通过对八个植物样本中评分的一部分SNP位点进行454测序直接评估。本研究中的测序深度不足以准确确定四倍体等位基因剂量,但在使用额外的质量筛选时,基于二倍体等位基因剂量获得了可靠的基因型调用。对植物样本中SNP位点的主成分分析表明,GBS评估的一小部分(<5%)遗传变异能够区分ATF0和ATF5。我们的结果证实,使用UNEAK分析GBS数据是一种可靠的方法,可用于异交多倍体全基因组SNP位点的发现。