Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
Rep Prog Phys. 2015 Jul;78(7):073901. doi: 10.1088/0034-4885/78/7/073901. Epub 2015 Jun 26.
Much of our understanding of vibrational excitations and elasticity is based upon analysis of frames consisting of sites connected by bonds occupied by central-force springs, the stability of which depends on the average number of neighbors per site z. When z < zc ≈ 2d, where d is the spatial dimension, frames are unstable with respect to internal deformations. This pedagogical review focuses on the properties of frames with z at or near zc, which model systems like randomly packed spheres near jamming and network glasses. Using an index theorem, N0 -NS = dN -NB relating the number of sites, N, and number of bonds, NB, to the number, N0, of modes of zero energy and the number, NS, of states of self stress, in which springs can be under positive or negative tension while forces on sites remain zero, it explores the properties of periodic square, kagome, and related lattices for which z = zc and the relation between states of self stress and zero modes in periodic lattices to the surface zero modes of finite free lattices (with free boundary conditions). It shows how modifications to the periodic kagome lattice can eliminate all but trivial translational zero modes and create topologically distinct classes, analogous to those of topological insulators, with protected zero modes at free boundaries and at interfaces between different topological classes.
我们对振动激发和弹性的理解在很大程度上基于对由通过由中心力弹簧占据的键连接的站点组成的框架的分析,其稳定性取决于每个站点的平均邻居数 z。当 z < zc ≈ 2d 时,其中 d 是空间维度,框架相对于内部变形是不稳定的。本教学评论侧重于 z 在 zc 处或附近的框架的性质,这些框架模型类似于临近阻塞和网络玻璃的随机堆积球体系统。使用指标定理 N0-NS = dN-NB 将零能模式的数量 N0 和自应力状态的数量 NS 与站点数量 N 和键数量 NB 相关联,其中弹簧可以处于正或负张力下,而站点上的力保持为零,探讨了具有 z = zc 的周期性正方形、 kagome 及相关晶格的性质,以及自应力状态与周期性晶格中的零模式之间的关系,以及有限自由晶格(具有自由边界条件)的表面零模式。它展示了如何修改周期性 kagome 晶格可以消除除平凡平移零模式之外的所有零模式,并创建拓扑上不同的类,类似于拓扑绝缘体,在自由边界和不同拓扑类之间的界面处具有受保护的零模式。