Rocks Jason W, Mehta Pankaj
Department of Physics, <a href="https://ror.org/05qwgg493">Boston University</a>, Boston, Massachusetts 02215, USA.
Biological Design Center, <a href="https://ror.org/05qwgg493">Boston University</a>, Boston, Massachusetts 02215, USA.
Phys Rev E. 2024 Aug;110(2-2):025002. doi: 10.1103/PhysRevE.110.025002.
The Maxwell-Calladine index theorem plays a central role in our current understanding of the mechanical rigidity of discrete materials. By considering the geometric constraints each material component imposes on a set of underlying degrees of freedom, the theorem relates the emergence of rigidity to constraint counting arguments. However, the Maxwell-Calladine paradigm is significantly limited-its exclusive reliance on the geometric relationships between constraints and degrees of freedom completely neglects the actual energetic costs of deforming individual components. To address this limitation, we derive a generalization of the Maxwell-Calladine index theorem based on susceptibilities that naturally incorporate local energetic properties such as stiffness and prestress. Using this extended framework, we investigate how local energetics modify the classical constraint counting picture to capture the relationship between deformations and external forces. We then combine this formalism with group representation theory to design mechanical metamaterials where differences in symmetry between local energy costs and structural geometry are exploited to control responses to external forces.
麦克斯韦 - 卡拉丹指数定理在我们当前对离散材料机械刚性的理解中起着核心作用。通过考虑每个材料组件对一组潜在自由度施加的几何约束,该定理将刚性的出现与约束计数论证联系起来。然而,麦克斯韦 - 卡拉丹范式存在显著局限性——它对约束与自由度之间几何关系的唯一依赖完全忽略了使单个组件变形的实际能量成本。为了解决这一局限性,我们基于敏感性推导了麦克斯韦 - 卡拉丹指数定理的一个推广,该敏感性自然地纳入了诸如刚度和预应力等局部能量特性。使用这个扩展框架,我们研究局部能量学如何修改经典的约束计数图景,以捕捉变形与外力之间的关系。然后,我们将这种形式主义与群表示理论相结合,设计机械超材料,其中利用局部能量成本与结构几何之间的对称性差异来控制对外力的响应。