Li Yang-yu, Fang Yong-hua, Li Da-cheng, Liu Yang
Guang Pu Xue Yu Guang Pu Fen Xi. 2015 Mar;35(3):841-5.
In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An infrared planar waveguide spectrometer is designed using this method. The operation wavelength range is 8 - 12 μm, the numerical aperture is 0.22, and the linear array detector contains 64 elements. By using Zemax software, the design is optimized and analyzed. The results indicate that the size of the optical system is 130 mm x 125 mm x 20 mm and the spectral resolution of spectrometer is 80 nm, which satisfy the requirements of design index. Thus it is this method that can be used for designing a miniature spectrometer without movable parts and sizes in the range of several cubic centimeters.
为了使红外光谱仪小型化,我们分析了当前微型光谱仪的光学设计,并提出了一种基于平面波导设计微型红外光栅光谱仪的方法。普通微型光谱仪使用微型光学元件来减小系统尺寸,这也缩小了有效孔径。因此光谱仪的性能有所下降。平面波导光谱仪的小型化原理与普通微型光谱仪的原理不同。在平面波导光谱仪中,光的传播被限制在一个薄的平面波导中,这看起来就像整个光学系统被压扁了一样。在平行于平面波导的方向上,通过狭缝的光被准直、色散和聚焦。并在探测器平面上形成光谱图像。这种光的传播与普通微型光谱仪中的光相似。在垂直于平面波导的方向上,光被平面波导的上下表面多次反射并在波导中传播。因此,相应光学元件在垂直方向上的尺寸可以非常小,这可以减小光学系统的尺寸。并且光谱仪的性能仍然良好。平面波导光谱仪的设计方法可分为两部分,即切尔尼 - 特纳结构设计和平面波导结构设计。首先,利用像差理论获得一个像差校正(球差、彗差、焦曲线)的切尔尼 - 特纳结构。同时确定工作波长范围和光谱分辨率。然后,利用几何光学理论设计一个平面波导结构以减小系统尺寸并校正像散。平面波导结构包括一个平面波导和两个柱面透镜。最后,在光学设计软件中将它们一起建模并作为一个整体进行优化。使用这种方法设计了一种红外平面波导光谱仪。其工作波长范围为8 - 12μm,数值孔径为0.22,线性阵列探测器包含64个元件。通过使用Zemax软件对设计进行优化和分析。结果表明,光学系统的尺寸为130 mm×125 mm×20 mm,光谱仪的光谱分辨率为80 nm,满足设计指标要求。因此,这种方法可用于设计无活动部件且尺寸在几立方厘米范围内的微型光谱仪。