Suppr超能文献

JTSA:一个用于时间序列抽象的开源框架。

JTSA: an open source framework for time series abstractions.

机构信息

Department of Electrical Computer and Biomedical Engineering of the University of Pavia, Via Ferrata 5, 27100 Pavia, Italy.

BIOMERIS srl, Via Ferrata 5, 27100 Pavia, Italy.

出版信息

Comput Methods Programs Biomed. 2015 Oct;121(3):175-88. doi: 10.1016/j.cmpb.2015.05.006. Epub 2015 Jun 5.

Abstract

BACKGROUND AND OBJECTIVE

The evaluation of the clinical status of a patient is frequently based on the temporal evolution of some parameters, making the detection of temporal patterns a priority in data analysis. Temporal abstraction (TA) is a methodology widely used in medical reasoning for summarizing and abstracting longitudinal data.

METHODS

This paper describes JTSA (Java Time Series Abstractor), a framework including a library of algorithms for time series preprocessing and abstraction and an engine to execute a workflow for temporal data processing. The JTSA framework is grounded on a comprehensive ontology that models temporal data processing both from the data storage and the abstraction computation perspective. The JTSA framework is designed to allow users to build their own analysis workflows by combining different algorithms. Thanks to the modular structure of a workflow, simple to highly complex patterns can be detected. The JTSA framework has been developed in Java 1.7 and is distributed under GPL as a jar file.

RESULTS

JTSA provides: a collection of algorithms to perform temporal abstraction and preprocessing of time series, a framework for defining and executing data analysis workflows based on these algorithms, and a GUI for workflow prototyping and testing. The whole JTSA project relies on a formal model of the data types and of the algorithms included in the library. This model is the basis for the design and implementation of the software application. Taking into account this formalized structure, the user can easily extend the JTSA framework by adding new algorithms. Results are shown in the context of the EU project MOSAIC to extract relevant patterns from data coming related to the long term monitoring of diabetic patients.

CONCLUSIONS

The proof that JTSA is a versatile tool to be adapted to different needs is given by its possible uses, both as a standalone tool for data summarization and as a module to be embedded into other architectures to select specific phenotypes based on TAs in a large dataset.

摘要

背景与目的

对患者临床状况的评估通常基于某些参数的时间演变,因此在数据分析中优先检测时间模式。时间抽象(TA)是一种广泛用于医学推理的方法,用于总结和抽象纵向数据。

方法

本文描述了 JTSA(Java 时间序列抽象器),它是一个包括算法库的框架,用于时间序列预处理和抽象,以及用于执行时间数据处理工作流的引擎。JTSA 框架基于一个全面的本体,从数据存储和抽象计算的角度对时间数据处理进行建模。JTSA 框架旨在允许用户通过组合不同的算法来构建自己的分析工作流。由于工作流的模块化结构,可以检测到简单到高度复杂的模式。JTSA 框架是用 Java 1.7 开发的,并作为一个 jar 文件以 GPL 形式发布。

结果

JTSA 提供了:用于执行时间序列的时间抽象和预处理的算法集合、基于这些算法定义和执行数据分析工作流的框架、以及用于工作流原型设计和测试的 GUI。整个 JTSA 项目依赖于库中包含的数据类型和算法的形式模型。该模型是软件应用程序设计和实现的基础。考虑到这种形式化结构,用户可以通过添加新算法轻松扩展 JTSA 框架。结果在欧盟项目 MOSAIC 的背景下展示,用于从与糖尿病患者长期监测相关的数据中提取相关模式。

结论

JTSA 是一种多功能工具,可以根据不同的需求进行调整,这一点可以从其多种用途中得到证明,既可以作为数据汇总的独立工具,也可以作为嵌入到其他架构中的模块,以便在大型数据集基于 TA 选择特定表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验