Suppr超能文献

金属离子与单克隆抗体的相互作用:第1部分。

Metal ion interactions with mAbs: Part 1.

作者信息

Glover Zephania Kwong, Basa Louisette, Moore Benjamin, Laurence Jennifer S, Sreedhara Alavattam

机构信息

a Late Stage Pharmaceutical Development; Genentech, Inc. ; South San Francisco , CA USA.

出版信息

MAbs. 2015;7(5):901-11. doi: 10.1080/19420862.2015.1062193.

Abstract

Fragmentation in the hinge region of an IgG1 monoclonal antibody (mAb) can affect product stability, potentially causing changes in potency and efficacy. Metals ions, such as Cu(2+), can bind to the mAb and undergo hydrolysis or oxidation, which can lead to cleavage of the molecule. To better understand the mechanism of Cu(2+)-mediated mAb fragmentation, hinge region cleavage products and their rates of formation were studied as a function of pH with and without Cu(2+). More detailed analysis of the chemical changes was investigated using model linear and cyclic peptides (with the sequence of SCDKTHTC) derived from the upper hinge region of the mAb. Cu(2+) mediated fragmentation was determined to be predominantly via a hydrolytic pathway in solution. The sites and products of hydrolytic cleavage are pH and strain dependent. In more acidic environments, rates of Cu(2+) induced hinge fragmentation are significantly slower than at higher pH. Although the degradation reaction rates between the linear and cyclic peptides are not significantly different, the products of degradation vary. mAb fragmentation can be reduced by modifying His, which is a potential metal binding site and a known ligand in other metalloproteins. These results suggest that a charge may contribute to stabilization of a specific molecular structure involved in hydrolysis, leading to the possible formation of a copper binding pocket that causes increased susceptibility of the hinge region to degradation.

摘要

IgG1单克隆抗体(mAb)铰链区的片段化会影响产品稳定性,可能导致效力和功效发生变化。金属离子,如Cu(2+),可与单克隆抗体结合并发生水解或氧化,从而导致分子裂解。为了更好地理解Cu(2+)介导的单克隆抗体片段化机制,研究了在有和没有Cu(2+)的情况下,铰链区裂解产物及其形成速率与pH值的关系。使用从单克隆抗体上铰链区衍生的模型线性和环状肽(序列为SCDKTHTC)对化学变化进行了更详细的分析。确定Cu(2+)介导的片段化在溶液中主要通过水解途径进行。水解裂解的位点和产物取决于pH值和应变。在酸性更强的环境中,Cu(2+)诱导的铰链片段化速率明显慢于在较高pH值时。虽然线性肽和环状肽之间的降解反应速率没有显著差异,但降解产物有所不同。通过修饰His可以减少单克隆抗体的片段化,His是一个潜在的金属结合位点,也是其他金属蛋白中已知的配体。这些结果表明,电荷可能有助于稳定参与水解的特定分子结构,导致可能形成铜结合口袋,从而增加铰链区对降解的敏感性。

相似文献

1
Metal ion interactions with mAbs: Part 1.
MAbs. 2015;7(5):901-11. doi: 10.1080/19420862.2015.1062193.
2
Specific cleavage of immunoglobulin G by copper ions.
Int J Pept Protein Res. 1996 Jul;48(1):48-55. doi: 10.1111/j.1399-3011.1996.tb01105.x.
4
Structural effect of a recombinant monoclonal antibody on hinge region peptide bond hydrolysis.
J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Oct 15;858(1-2):254-62. doi: 10.1016/j.jchromb.2007.08.043. Epub 2007 Sep 11.
5
Discovery and Characterization of Histidine Oxidation Initiated Cross-links in an IgG1 Monoclonal Antibody.
Anal Chem. 2017 Aug 1;89(15):7915-7923. doi: 10.1021/acs.analchem.7b00860. Epub 2017 Jul 10.
6
Fragmentation of a recombinant monoclonal antibody at various pH.
Pharm Res. 2008 Aug;25(8):1881-90. doi: 10.1007/s11095-008-9606-3. Epub 2008 May 13.
8
Non-enzymatic hinge region fragmentation of antibodies in solution.
J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Apr 25;818(2):115-21. doi: 10.1016/j.jchromb.2004.12.033.
9
Characterization of a unique IgG1 mAb CEX profile by limited Lys-C proteolysis/CEX separation coupled with mass spectrometry and structural analysis.
J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Jul 15;878(22):1973-81. doi: 10.1016/j.jchromb.2010.05.032. Epub 2010 Jun 1.
10
Characterization of variable regions of monoclonal antibodies by top-down mass spectrometry.
Anal Chem. 2007 Aug 1;79(15):5723-9. doi: 10.1021/ac070483q. Epub 2007 Jun 26.

引用本文的文献

1
Stability of Protein Pharmaceuticals: Recent Advances.
Pharm Res. 2024 Jul;41(7):1301-1367. doi: 10.1007/s11095-024-03726-x. Epub 2024 Jun 27.
3
Nutritional deficiencies that may predispose to long COVID.
Inflammopharmacology. 2023 Apr;31(2):573-583. doi: 10.1007/s10787-023-01183-3. Epub 2023 Mar 15.
4
A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future.
Pharmaceutics. 2023 Feb 10;15(2):600. doi: 10.3390/pharmaceutics15020600.
7
Metal Ion Interactions with mAbs: Part 2. Zinc-Mediated Aggregation of IgG1 Monoclonal Antibodies.
Pharm Res. 2021 Aug;38(8):1387-1395. doi: 10.1007/s11095-021-03089-7. Epub 2021 Aug 11.
8
Inhaled antibodies: Quality and performance considerations.
Hum Vaccin Immunother. 2022 Apr 29;18(2):1940650. doi: 10.1080/21645515.2021.1940650. Epub 2021 Jun 30.
10
Antiviral effect of copper chloride on feline calicivirus and synergy with ribavirin in vitro.
BMC Vet Res. 2020 Jul 6;16(1):231. doi: 10.1186/s12917-020-02441-0.

本文引用的文献

2
The relative rate of immunoglobulin gamma 1 fragmentation.
J Pharm Sci. 2011 Apr;100(4):1341-9. doi: 10.1002/jps.22389. Epub 2010 Dec 1.
3
Role of surface exposed tryptophan as substrate generators for the antibody catalyzed water oxidation pathway.
Mol Pharm. 2013 Jan 7;10(1):278-88. doi: 10.1021/mp300418r. Epub 2012 Nov 26.
6
Breaking the light and heavy chain linkage of human immunoglobulin G1 (IgG1) by radical reactions.
J Biol Chem. 2011 Jul 15;286(28):24674-84. doi: 10.1074/jbc.M111.255026. Epub 2011 May 23.
7
Fragmentation of monoclonal antibodies.
MAbs. 2011 May-Jun;3(3):253-63. doi: 10.4161/mabs.3.3.15608. Epub 2011 May 1.
8
A new roadmap for biopharmaceutical drug product development: Integrating development, validation, and quality by design.
J Pharm Sci. 2011 Aug;100(8):3031-3043. doi: 10.1002/jps.22545. Epub 2011 Mar 18.
9
Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni(II) ions.
J Inorg Biochem. 2011 Jan;105(1):10-6. doi: 10.1016/j.jinorgbio.2010.09.003. Epub 2010 Sep 29.
10
Strategies and challenges for the next generation of therapeutic antibodies.
Nat Rev Immunol. 2010 May;10(5):345-52. doi: 10.1038/nri2747.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验