Suppr超能文献

通过自由基反应断裂人免疫球蛋白 G1(IgG1)的重链和轻链连接。

Breaking the light and heavy chain linkage of human immunoglobulin G1 (IgG1) by radical reactions.

机构信息

Department of Pharma Technical Development, Genentech, Oceanside, California 92056, USA.

出版信息

J Biol Chem. 2011 Jul 15;286(28):24674-84. doi: 10.1074/jbc.M111.255026. Epub 2011 May 23.

Abstract

We report that the production of hydrogen peroxide by radical chain reductions of molecular oxygen into water in buffers leads to hinge degradation of a human IgG1 under thermal incubation conditions. The production of the hydrogen peroxide can be accelerated by superoxide dismutase or redox active metal ions or inhibited by free radical scavengers. The hydrogen peroxide production rate correlates well with the hinge cleavage. In addition to radical reaction mechanisms described previously, new degradation pathways and products were observed. These products were determined to be generated via radical reactions initiated by electron transfer and addition to the interchain disulfide bond between Cys(215) of the light chain and Cys(225) of the heavy chain. Decomposition of the resulting disulfide bond radical anion breaks the C-S bond at the side chain of Cys, converting it into dehydroalanine and generating a sulfur radical adduct at its counterpart. The hydrolysis of the unsaturated dehydropeptides removes Cys and yields an amide at the C terminus of the new fragment. Meanwhile, the competition between the carbonyl (-C(α)ONH-) and the side chain of Cys allows an electron transfer to the α carbon, forming a new intermediate radical species (-(·)C(α)(O(-))NH-) at Cys(225). Dissociative deamidation occurs along the N-C(α) bond, resulting in backbone cleavage. Given that hydrogen peroxide is a commonly observed product of thermal stress and plays a role in mediating the unique degradation of an IgG1, strategies for improving stability of human antibody therapeutics are discussed.

摘要

我们报告在缓冲液中通过氧分子的自由基链还原产生过氧化氢会导致人 IgG1 在热孵育条件下铰链降解。超氧化物歧化酶或氧化还原活性金属离子可以加速过氧化氢的产生,而自由基清除剂可以抑制其产生。过氧化氢的产生速率与铰链断裂密切相关。除了先前描述的自由基反应机制外,还观察到了新的降解途径和产物。这些产物被确定是通过电子转移和加成到轻链的 Cys(215)和重链的 Cys(225)之间的链间二硫键引发的自由基反应生成的。所得二硫键自由基阴离子的分解打破了 Cys 侧链上的 C-S 键,将其转化为脱氢丙氨酸,并在其对应物上生成硫自由基加合物。不饱和脱氢肽的水解去除 Cys,并在新片段的 C 末端生成酰胺。同时,羰基(-C(α)ONH-)和 Cys 侧链之间的竞争允许电子转移到α碳上,在 Cys(225)处形成新的中间自由基物种(-(·)C(α)(O(-))NH-)。沿 N-C(α)键发生解吸脱酰胺反应,导致骨架断裂。鉴于过氧化氢是热应激常见的产物,并在介导 IgG1 的独特降解中发挥作用,因此讨论了提高人抗体治疗药物稳定性的策略。

相似文献

1
Breaking the light and heavy chain linkage of human immunoglobulin G1 (IgG1) by radical reactions.
J Biol Chem. 2011 Jul 15;286(28):24674-84. doi: 10.1074/jbc.M111.255026. Epub 2011 May 23.
2
Human IgG1 hinge fragmentation as the result of H2O2-mediated radical cleavage.
J Biol Chem. 2009 Dec 18;284(51):35390-402. doi: 10.1074/jbc.M109.064147.
3
Engineering upper hinge improves stability and effector function of a human IgG1.
J Biol Chem. 2012 Feb 17;287(8):5891-7. doi: 10.1074/jbc.M111.311811. Epub 2011 Dec 27.
5
Intrachain disulfide bond in the core hinge region of human IgG4.
Protein Sci. 1997 Feb;6(2):407-15. doi: 10.1002/pro.5560060217.
6
Fragmentation of a Monoclonal Antibody by Peroxotungstate.
Pharm Res. 2018 Sep 25;35(11):219. doi: 10.1007/s11095-018-2496-0.
7
Light-induced conversion of Trp to Gly and Gly hydroperoxide in IgG1.
Mol Pharm. 2013 Mar 4;10(3):1146-50. doi: 10.1021/mp300680c. Epub 2013 Feb 6.
9
The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds.
Mol Immunol. 2001 Jan;38(1):1-8. doi: 10.1016/s0161-5890(01)00050-5.
10
Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability.
J Biol Chem. 2012 Jul 13;287(29):24525-33. doi: 10.1074/jbc.M112.369744. Epub 2012 May 18.

引用本文的文献

1
Stability of Protein Pharmaceuticals: Recent Advances.
Pharm Res. 2024 Jul;41(7):1301-1367. doi: 10.1007/s11095-024-03726-x. Epub 2024 Jun 27.
3
R409K mutation prevents acid-induced aggregation of human IgG4.
PLoS One. 2020 Mar 17;15(3):e0229027. doi: 10.1371/journal.pone.0229027. eCollection 2020.
5
Assessment of disulfide and hinge modifications in monoclonal antibodies.
Electrophoresis. 2017 Mar;38(6):769-785. doi: 10.1002/elps.201600425. Epub 2017 Mar 2.
6
Metal ion interactions with mAbs: Part 1.
MAbs. 2015;7(5):901-11. doi: 10.1080/19420862.2015.1062193.
7
Engineering upper hinge improves stability and effector function of a human IgG1.
J Biol Chem. 2012 Feb 17;287(8):5891-7. doi: 10.1074/jbc.M111.311811. Epub 2011 Dec 27.

本文引用的文献

1
Histidine residue mediates radical-induced hinge cleavage of human IgG1.
J Biol Chem. 2010 Jun 11;285(24):18662-71. doi: 10.1074/jbc.M110.108597. Epub 2010 Mar 19.
2
Human IgG1 hinge fragmentation as the result of H2O2-mediated radical cleavage.
J Biol Chem. 2009 Dec 18;284(51):35390-402. doi: 10.1074/jbc.M109.064147.
3
Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems.
Annu Rev Biochem. 2009;78:673-99. doi: 10.1146/annurev.biochem.78.080207.092132.
4
Elevated cleavage of human immunoglobulin gamma molecules containing a lambda light chain mediated by iron and histidine.
Anal Biochem. 2009 Jun 15;389(2):107-17. doi: 10.1016/j.ab.2009.03.027. Epub 2009 Mar 24.
5
Fragmentation of a recombinant monoclonal antibody at various pH.
Pharm Res. 2008 Aug;25(8):1881-90. doi: 10.1007/s11095-008-9606-3. Epub 2008 May 13.
6
Cellular defenses against superoxide and hydrogen peroxide.
Annu Rev Biochem. 2008;77:755-76. doi: 10.1146/annurev.biochem.77.061606.161055.
7
Beta-elimination and peptide bond hydrolysis: two distinct mechanisms of human IgG1 hinge fragmentation upon storage.
J Am Chem Soc. 2007 Jun 6;129(22):6976-7. doi: 10.1021/ja0705994. Epub 2007 May 15.
8
Development trends for monoclonal antibody cancer therapeutics.
Nat Rev Drug Discov. 2007 May;6(5):349-56. doi: 10.1038/nrd2241.
9
Immunoglobulin light chains generate hydrogen peroxide.
J Am Soc Nephrol. 2007 Apr;18(4):1239-45. doi: 10.1681/ASN.2006111299. Epub 2007 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验