Suppr超能文献

用于测量压力-容积关系的小鼠心脏导管插入术:探究鲍迪奇效应

Cardiac Catheterization in Mice to Measure the Pressure Volume Relationship: Investigating the Bowditch Effect.

作者信息

Zhang Bo, Davis Jonathan P, Ziolo Mark T

机构信息

Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University; Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.

Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University.

出版信息

J Vis Exp. 2015 Jun 14(100):e52618. doi: 10.3791/52618.

Abstract

Animal models that mimic human cardiac disorders have been created to test potential therapeutic strategies. A key component to evaluating these strategies is to examine their effects on heart function. There are several techniques to measure in vivo cardiac mechanics (e.g., echocardiography, pressure/volume relations, etc.). Compared to echocardiography, real-time left ventricular (LV) pressure/volume analysis via catheterization is more precise and insightful in assessing LV function. Additionally, LV pressure/volume analysis provides the ability to instantaneously record changes during manipulations of contractility (e.g., β-adrenergic stimulation) and pathological insults (e.g., ischemia/reperfusion injury). In addition to the maximum (+dP/dt) and minimum (-dP/dt) rate of pressure change in the LV, an accurate assessment of LV function via several load-independent indexes (e.g., end systolic pressure volume relationship and preload recruitable stroke work) can be attained. Heart rate has a significant effect on LV contractility such that an increase in the heart rate is the primary mechanism to increase cardiac output (i.e., Bowditch effect). Thus, when comparing hemodynamics between experimental groups, it is necessary to have similar heart rates. Furthermore, a hallmark of many cardiomyopathy models is a decrease in contractile reserve (i.e., decreased Bowditch effect). Consequently, vital information can be obtained by determining the effects of increasing heart rate on contractility. Our and others data has demonstrated that the neuronal nitric oxide synthase (NOS1) knockout mouse has decreased contractility. Here we describe the procedure of measuring LV pressure/volume with increasing heart rates using the NOS1 knockout mouse model.

摘要

为了测试潜在的治疗策略,已经创建了模拟人类心脏疾病的动物模型。评估这些策略的一个关键组成部分是检查它们对心脏功能的影响。有几种技术可用于测量体内心脏力学(例如,超声心动图、压力/容积关系等)。与超声心动图相比,通过导管插入术进行的实时左心室(LV)压力/容积分析在评估LV功能方面更精确且更具洞察力。此外,LV压力/容积分析能够在操纵收缩性(例如,β-肾上腺素能刺激)和病理损伤(例如,缺血/再灌注损伤)期间即时记录变化。除了LV中压力变化的最大(+dP/dt)和最小(-dP/dt)速率外,还可以通过几个与负荷无关的指标(例如,收缩末期压力容积关系和可募集前负荷的搏功)准确评估LV功能。心率对LV收缩性有显著影响,因此心率增加是增加心输出量的主要机制(即,鲍迪奇效应)。因此,在比较实验组之间的血流动力学时,有必要使心率相似。此外,许多心肌病模型的一个标志是收缩储备降低(即,鲍迪奇效应降低)。因此,通过确定心率增加对收缩性的影响可以获得重要信息。我们和其他人的数据表明,神经元型一氧化氮合酶(NOS1)基因敲除小鼠的收缩性降低。在这里,我们描述了使用NOS1基因敲除小鼠模型在心率增加时测量LV压力/容积的程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验