Abou D S, Pickett J E, Thorek D L J
1 Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
2 Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Br J Radiol. 2015 Oct;88(1054):20150185. doi: 10.1259/bjr.20150185. Epub 2015 Jul 2.
Molecular imaging provides considerable insight into biological processes for greater understanding of health and disease. Numerous advances in medical physics, chemistry and biology have driven the growth of this field in the past two decades. With exquisite sensitivity, depth of detection and potential for theranostics, radioactive imaging approaches have played a major role in the emergence of molecular imaging. At the same time, developments in materials science, characterization and synthesis have led to explosive progress in the nanoparticle (NP) sciences. NPs are generally defined as particles with a diameter in the nanometre size range. Unique physical, chemical and biological properties arise at this scale, stimulating interest for applications as diverse as energy production and storage, chemical catalysis and electronics. In biomedicine, NPs have generated perhaps the greatest attention. These materials directly interface with life at the subcellular scale of nucleic acids, membranes and proteins. In this review, we will detail the advances made in combining radioactive imaging and NPs. First, we provide an overview of the NP platforms and their properties. This is followed by a look at methods for radiolabelling NPs with gamma-emitting radionuclides for use in single photon emission CT and planar scintigraphy. Next, utilization of positron-emitting radionuclides for positron emission tomography is considered. Finally, recent advances for multimodal nuclear imaging with NPs and efforts for clinical translation and ongoing trials are discussed.
分子成像为深入了解生物过程以更好地认识健康与疾病提供了重要视角。在过去二十年中,医学物理、化学和生物学的诸多进展推动了该领域的发展。凭借其极高的灵敏度、检测深度以及诊疗一体化的潜力,放射性成像方法在分子成像的兴起过程中发挥了重要作用。与此同时,材料科学、表征与合成方面的进展促使纳米颗粒(NP)科学取得了爆发式的进步。NP通常被定义为直径在纳米尺寸范围内的颗粒。在这个尺度下会出现独特的物理、化学和生物学特性,从而激发了人们对其在能源生产与存储、化学催化以及电子学等多种应用领域的兴趣。在生物医学领域,NP可能受到了最多的关注。这些材料在核酸、膜和蛋白质的亚细胞尺度上直接与生命相互作用。在本综述中,我们将详细阐述在结合放射性成像与NP方面所取得的进展。首先,我们概述NP平台及其特性。接下来,探讨用发射γ射线的放射性核素对NP进行放射性标记以用于单光子发射计算机断层扫描和平面闪烁显像的方法。然后,考虑利用发射正电子的放射性核素进行正电子发射断层扫描。最后,讨论NP在多模态核成像方面的最新进展以及临床转化的努力和正在进行的试验。