Sessolo Michele, Marcon Iacopo, Bovetti Serena, Losi Gabriele, Cammarota Mario, Ratto Gian Michele, Fellin Tommaso, Carmignoto Giorgio
Neuroscience Institute, National Research Council and Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy.
Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy, and.
J Neurosci. 2015 Jul 1;35(26):9544-57. doi: 10.1523/JNEUROSCI.5117-14.2015.
Parvalbumin (Pv)-positive inhibitory interneurons effectively control network excitability, and their optogenetic activation has been reported to block epileptic seizures. An intense activity in GABAergic interneurons, including Pv interneurons, before seizures has been described in different experimental models of epilepsy, raising the hypothesis that an increased GABAergic inhibitory signal may, under certain conditions, initiate seizures. It is therefore unclear whether the activity of Pv interneurons enhances or opposes epileptiform activities. Here we use a mouse cortical slice model of focal epilepsy in which the epileptogenic focus can be identified and the role of Pv interneurons in the generation and propagation of seizure-like ictal events is accurately analyzed by a combination of optogenetic, electrophysiological, and imaging techniques. We found that a selective activation of Pv interneurons at the focus failed to block ictal generation and induced postinhibitory rebound spiking in pyramidal neurons, enhancing neuronal synchrony and promoting ictal generation. In contrast, a selective activation of Pv interneurons distant from the focus blocked ictal propagation and shortened ictal duration at the focus. We revealed that the reduced ictal duration was a direct consequence of the ictal propagation block, probably by preventing newly generated afterdischarges to travel backwards to the original focus of ictal initiation. Similar results were obtained upon individual Pv interneuron activation by intracellular depolarizing current pulses. The functional dichotomy of Pv interneurons here described opens new perspectives to our understanding of how local inhibitory circuits govern generation and spread of focal epileptiform activities.
小白蛋白(Pv)阳性抑制性中间神经元可有效控制网络兴奋性,据报道,对其进行光遗传学激活可阻断癫痫发作。在不同的癫痫实验模型中,均已描述了癫痫发作前包括Pv中间神经元在内的GABA能中间神经元的强烈活动,这引发了一种假说,即在某些情况下,增强的GABA能抑制信号可能引发癫痫发作。因此,尚不清楚Pv中间神经元的活动是增强还是对抗癫痫样活动。在这里,我们使用局灶性癫痫的小鼠皮质切片模型,其中可以识别致痫灶,并通过光遗传学、电生理学和成像技术的组合,准确分析Pv中间神经元在癫痫样发作事件的产生和传播中的作用。我们发现,在病灶处选择性激活Pv中间神经元未能阻断发作的产生,反而在锥体神经元中诱发了抑制后反弹放电,增强了神经元同步性并促进了发作的产生。相反,在远离病灶处选择性激活Pv中间神经元则阻断了发作的传播,并缩短了病灶处的发作持续时间。我们发现,发作持续时间的缩短是发作传播受阻的直接结果,可能是通过阻止新产生的后放电逆向传播到发作起始的原始病灶。通过细胞内去极化电流脉冲对单个Pv中间神经元进行激活也获得了类似的结果。本文所描述的Pv中间神经元的功能二分法为我们理解局部抑制性回路如何控制局灶性癫痫样活动的产生和传播开辟了新的视角。