Li Yuye, Gu Huaguang, Qi Changsheng
College of Mathematics and Computer Science, Chifeng University, Chifeng, 024000 China.
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China.
Cogn Neurodyn. 2025 Dec;19(1):59. doi: 10.1007/s11571-025-10243-z. Epub 2025 Apr 7.
Different from the common role of inhibitory modulations to suppress firing activities, uncommon roles of inhibitory modulations are observed in recent experiments. For instance, inhibitory autapse can enhance spiking frequency of interneuron, and inhibitory interneuron can enhance spiking of pyramidal neuron to epileptiform firing with high membrane potential and extracellular potassium concentration, presenting possible novel etiology of brain diseases and challenge to excitation-inhibition balance. In the present paper, the uncommon roles, the common roles, and their cooperations are studied in a computation model. Firstly, the inhibitory interneuron with fast instead of slow decay synaptic current plays an uncommon role, and the complex process for the uncommon role is obtained. Compared with slow decay, the fast decay inhibitory synaptic current is strong enough to induce silence with low membrane potential, resulting in long silence and high level of extracellular potassium concentration when firing recovers, initiating positive feedback between firing and potassium concentration to induce the epileptiform firing. Secondly, inhibitory autaptic current with fast rather than slow decay plays an uncommon role to enhance spiking frequency of interneuron. Autaptic current with slow decay causes weak potassium current during downstroke of action potential to induce spike advanced. Finally, different cooperations between the common and uncommon roles of interneuron and autapse are obtained. Especially, fast autapse with great uncommon role can reverse the common role of interneuron, which can induce spiking to the epileptiform firing, and slow autapse with great common role can reverse the uncommon role of interneuron, which can change the epileptiform firing to spiking for the normal state. These findings present explanations to the uncommon roles of inhibitory modulations and multiple feasible measures to modulate the epileptiform firing and brain diseases.
与抑制性调制抑制放电活动的常见作用不同,近期实验中观察到了抑制性调制的一些不寻常作用。例如,抑制性自突触可增强中间神经元的放电频率,并且抑制性中间神经元可在高膜电位和细胞外钾浓度条件下增强锥体细胞向癫痫样放电的转换,这提示了脑部疾病可能的新病因以及对兴奋 - 抑制平衡的挑战。在本文中,我们在一个计算模型中研究了这些不寻常作用、常见作用及其协同作用。首先,具有快速而非缓慢衰减突触电流的抑制性中间神经元发挥了不寻常作用,并得到了该不寻常作用的复杂过程。与缓慢衰减相比,快速衰减的抑制性突触电流足够强,能够在低膜电位时诱导沉默,导致放电恢复时出现长时间沉默和高细胞外钾浓度,引发放电与钾浓度之间的正反馈,从而诱导癫痫样放电。其次,具有快速而非缓慢衰减的抑制性自突触电流发挥不寻常作用,增强了中间神经元的放电频率。具有缓慢衰减的自突触电流在动作电位下降期间导致弱钾电流,从而诱导放电提前。最后,得到了中间神经元和自突触常见作用与不寻常作用之间的不同协同作用。特别是,具有极大不寻常作用的快速自突触可逆转中间神经元的常见作用,使其诱导放电转变为癫痫样放电,而具有极大常见作用的缓慢自突触可逆转中间神经元的不寻常作用,将癫痫样放电转变为正常状态的放电。这些发现为抑制性调制的不寻常作用提供了解释,并为调节癫痫样放电和脑部疾病提供了多种可行的措施。