Unidad de Biofísica, Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia (Spain).
IKERBASQUE, 48013 Bilbao (Spain).
Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9898-902. doi: 10.1002/anie.201504617. Epub 2015 Jul 1.
Glycosyltransferases (GTs) comprise a prominent family of enzymes that play critical roles in a variety of cellular processes, including cell signaling, cell development, and host-pathogen interactions. Glycosyl transfer can proceed with either inversion or retention of the anomeric configuration with respect to the reaction substrates and products. The elucidation of the catalytic mechanism of retaining GTs remains a major challenge. A native ternary complex of a GT in a productive mode for catalysis is reported, that of the retaining glucosyl-3-phosphoglycerate synthase GpgS from M. tuberculosis in the presence of the sugar donor UDP-Glc, the acceptor substrate phosphoglycerate, and the divalent cation cofactor. Through a combination of structural, chemical, enzymatic, molecular dynamics, and quantum-mechanics/molecular-mechanics (QM/MM) calculations, the catalytic mechanism was unraveled, thereby providing a strong experimental support for a front-side substrate-assisted SN i-type reaction.
糖基转移酶(GTs)是一类重要的酶家族,在多种细胞过程中发挥关键作用,包括细胞信号转导、细胞发育和宿主-病原体相互作用。糖基转移可以在反应底物和产物中相对于非对映构型进行反转或保留。阐明保留 GT 的催化机制仍然是一个主要挑战。报告了一种保留 GT 的天然三元复合物,该复合物为结核分枝杆菌中的保留型葡萄糖基-3-磷酸甘油酸合酶 GpgS,在存在糖供体 UDP-Glc、受体底物磷酸甘油酸和二价阳离子辅因子的情况下处于催化的生产模式。通过结构、化学、酶学、分子动力学和量子力学/分子力学(QM/MM)计算的组合,揭示了催化机制,从而为前位底物辅助 SN i 型反应提供了强有力的实验支持。