Suppr超能文献

与人体下体负压相比,渐进性失血期间的脑血流速度调节。

Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans.

作者信息

Rickards Caroline A, Johnson Blair D, Harvey Ronée E, Convertino Victor A, Joyner Michael J, Barnes Jill N

机构信息

Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas;

Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota;

出版信息

J Appl Physiol (1985). 2015 Sep 15;119(6):677-85. doi: 10.1152/japplphysiol.00127.2015. Epub 2015 Jul 2.

Abstract

Lower body negative pressure (LBNP) is often used to simulate blood loss in humans. It is unknown if cerebral blood flow responses to actual blood loss are analogous to simulated blood loss during LBNP. Nine healthy men were studied at baseline, during three levels of LBNP (5 min at -15, -30, and -45 mmHg), and during three levels of blood loss (333, 667, and 1,000 ml). LBNP and blood loss conditions were randomized. Intra-arterial mean arterial pressure (MAP) during LBNP was similar to that during blood loss (P ≥ 0.42). Central venous pressure (2.8 ± 0.7 vs. 4.0 ± 0.8, 1.2 ± 0.6 vs. 3.5 ± 0.8, and 0.2 ± 0.9 vs. 2.1 ± 0.9 mmHg for levels 1, 2, and 3, respectively, P ≤ 0.003) and stroke volume (71 ± 4 vs. 80 ± 3, 60 ± 3 vs. 74 ± 3, and 51 ± 2 vs. 68 ± 4 ml for levels 1, 2, and 3, respectively, P ≤ 0.002) were lower during LBNP than blood loss. Despite differences in central venous pressure, middle cerebral artery velocity (MCAv) and cerebrovascular conductance were similar between LBNP and blood loss at each level (MCAv at level 3: 62 ± 6 vs. 66 ± 5 cm/s, P = 0.37; cerebrovascular conductance at level 3: 0.72 ± 0.05 vs. 0.73 ± 0.05 cm·s(-1)·mmHg(-1), P = 0.53). While the slope of the MAP-MCAv relationship was slightly different between LBNP and blood loss (0.41 ± 0.03 and 0.66 ± 0.04 cm·s(-1)·mmHg(-1), respectively, P = 0.05), time domain gain between MAP and MCAv at maximal LBNP/blood loss (P = 0.23) and low-frequency MAP-mean MCAv transfer function coherence, gain, and phase were similar (P ≥ 0.10). Our results suggest that cerebral hemodynamic responses to LBNP to -45 mmHg and blood loss up to 1,000 ml follow a similar trajectory, and the arterial pressure-cerebral blood velocity relationship is not altered from baseline under these conditions.

摘要

下体负压(LBNP)常被用于模拟人体失血情况。目前尚不清楚大脑对实际失血的血流反应是否与LBNP期间模拟失血的反应相似。对9名健康男性在基线状态、三个LBNP水平(-15、-30和-45 mmHg下各5分钟)以及三个失血水平(333、667和1000 ml)下进行了研究。LBNP和失血情况是随机安排的。LBNP期间的动脉平均压(MAP)与失血期间相似(P≥0.42)。中心静脉压(分别在第1、2和3水平时,LBNP组为2.8±0.7 vs. 4.0±0.8、1.2±0.6 vs. 3.5±0.8、0.2±0.9 vs. 2.1±0.9 mmHg,P≤0.003)和每搏输出量(分别在第1、2和3水平时,LBNP组为71±4 vs. 80±3、60±3 vs. 74±3、51±2 vs. 68±4 ml,P≤0.002)在LBNP期间低于失血期间。尽管中心静脉压存在差异,但在每个水平上,LBNP和失血时大脑中动脉血流速度(MCAv)和脑血管传导率相似(第3水平时MCAv:62±6 vs. 66±5 cm/s,P = 0.37;第3水平时脑血管传导率:0.72±0.05 vs. 0.73±0.05 cm·s⁻¹·mmHg⁻¹,P = 0.53)。虽然LBNP和失血时MAP-MCAv关系的斜率略有不同(分别为0.41±0.03和0.66±0.04 cm·s⁻¹·mmHg⁻¹,P = 0.05),但在最大LBNP/失血时MAP与MCAv之间的时域增益(P = 0.23)以及低频MAP-平均MCAv传递函数的相干性、增益和相位相似(P≥0.10)。我们的结果表明,大脑对至-45 mmHg的LBNP和高达1000 ml失血的血流动力学反应遵循相似轨迹,并且在这些条件下动脉压-脑血流速度关系与基线相比未发生改变。

相似文献

1
Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans.
J Appl Physiol (1985). 2015 Sep 15;119(6):677-85. doi: 10.1152/japplphysiol.00127.2015. Epub 2015 Jul 2.
2
Tolerance to central hypovolemia: the influence of oscillations in arterial pressure and cerebral blood velocity.
J Appl Physiol (1985). 2011 Oct;111(4):1048-58. doi: 10.1152/japplphysiol.00231.2011. Epub 2011 Jul 28.
3
Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress.
Aerosp Med Hum Perform. 2015 Aug;86(8):688-92. doi: 10.3357/AMHP.4239.2015.
5
A comparison of protocols for simulating hemorrhage in humans: step versus ramp lower body negative pressure.
J Appl Physiol (1985). 2021 Feb 1;130(2):380-389. doi: 10.1152/japplphysiol.00230.2020. Epub 2020 Nov 19.
7
Reductions in central venous pressure by lower body negative pressure or blood loss elicit similar hemodynamic responses.
J Appl Physiol (1985). 2014 Jul 15;117(2):131-41. doi: 10.1152/japplphysiol.00070.2014. Epub 2014 May 29.
8
The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia.
Am J Physiol Regul Integr Comp Physiol. 2016 Feb 15;310(4):R375-83. doi: 10.1152/ajpregu.00367.2015. Epub 2015 Dec 16.
9
The effect of oscillatory hemodynamics on the cardiovascular responses to simulated hemorrhage during isocapnia.
J Appl Physiol (1985). 2023 Dec 1;135(6):1312-1322. doi: 10.1152/japplphysiol.00241.2023. Epub 2023 Oct 26.
10
The impact of acute central hypovolemia on cerebral hemodynamics: does sex matter?
J Appl Physiol (1985). 2021 Jun 1;130(6):1786-1797. doi: 10.1152/japplphysiol.00499.2020. Epub 2021 Apr 29.

引用本文的文献

4
Static autoregulation in humans.
J Cereb Blood Flow Metab. 2024 Nov;44(11):1191-1207. doi: 10.1177/0271678X231210430. Epub 2023 Nov 7.
5
The effect of oscillatory hemodynamics on the cardiovascular responses to simulated hemorrhage during isocapnia.
J Appl Physiol (1985). 2023 Dec 1;135(6):1312-1322. doi: 10.1152/japplphysiol.00241.2023. Epub 2023 Oct 26.
7
8
Preliminary Evidence of Orthostatic Intolerance and Altered Cerebral Vascular Control Following Sport-Related Concussion.
Front Neurol. 2021 Apr 9;12:620757. doi: 10.3389/fneur.2021.620757. eCollection 2021.
9
A comparison of protocols for simulating hemorrhage in humans: step versus ramp lower body negative pressure.
J Appl Physiol (1985). 2021 Feb 1;130(2):380-389. doi: 10.1152/japplphysiol.00230.2020. Epub 2020 Nov 19.
10
Inferior Vena Cava Diameter is an Early Marker of Central Hypovolemia during Simulated Blood Loss.
Prehosp Emerg Care. 2021 May-Jun;25(3):341-346. doi: 10.1080/10903127.2020.1778823. Epub 2020 Jul 7.

本文引用的文献

1
Impact of transient hypotension on regional cerebral blood flow in humans.
Clin Sci (Lond). 2015 Jul;129(2):169-78. doi: 10.1042/CS20140751.
2
Impact of hypocapnia and cerebral perfusion on orthostatic tolerance.
J Physiol. 2014 Dec 1;592(23):5203-19. doi: 10.1113/jphysiol.2014.280586. Epub 2014 Sep 12.
3
Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI.
J Appl Physiol (1985). 2014 Nov 15;117(10):1084-9. doi: 10.1152/japplphysiol.00651.2014. Epub 2014 Sep 4.
4
Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia.
J Appl Physiol (1985). 2014 Nov 15;117(10):1090-6. doi: 10.1152/japplphysiol.00285.2014. Epub 2014 Jul 10.
5
Reductions in central venous pressure by lower body negative pressure or blood loss elicit similar hemodynamic responses.
J Appl Physiol (1985). 2014 Jul 15;117(2):131-41. doi: 10.1152/japplphysiol.00070.2014. Epub 2014 May 29.
6
Validation of lower body negative pressure as an experimental model of hemorrhage.
J Appl Physiol (1985). 2014 Feb 15;116(4):406-15. doi: 10.1152/japplphysiol.00640.2013. Epub 2013 Dec 19.
7
Estimation of individual-specific progression to impending cardiovascular instability using arterial waveforms.
J Appl Physiol (1985). 2013 Oct 15;115(8):1196-202. doi: 10.1152/japplphysiol.00668.2013. Epub 2013 Aug 8.
8
Hypercapnia-induced increases in cerebral blood flow do not improve lower body negative pressure tolerance during hyperthermia.
Am J Physiol Regul Integr Comp Physiol. 2013 Sep 15;305(6):R604-9. doi: 10.1152/ajpregu.00052.2013. Epub 2013 Jul 17.
9
Death on the battlefield (2001-2011): implications for the future of combat casualty care.
J Trauma Acute Care Surg. 2012 Dec;73(6 Suppl 5):S431-7. doi: 10.1097/TA.0b013e3182755dcc.
10
Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries.
Exp Physiol. 2013 Mar;98(3):692-8. doi: 10.1113/expphysiol.2012.068015. Epub 2012 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验