Charli Adhithiya, Jin Huajun, Anantharam Vellareddy, Kanthasamy Arthi, Kanthasamy Anumantha G
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
Neurotoxicology. 2016 Mar;53:302-313. doi: 10.1016/j.neuro.2015.06.007. Epub 2015 Jul 2.
Tebufenpyrad and pyridaben are two agro-chemically important acaricides that function like the known mitochondrial toxicant rotenone. Although these two compounds have been commonly used to kill populations of mites and ticks in commercial greenhouses, their neurotoxic profiles remain largely unknown. Therefore, we investigated the effects of these two pesticides on mitochondrial structure and function in an in vitro cell culture model using the Seahorse bioanalyzer and confocal fluorescence imaging. The effects were compared with rotenone. Exposing rat dopaminergic neuronal cells (N27 cells) to tebufenpyrad and pyridaben for 3h induced dose-dependent cell death with an EC50 of 3.98μM and 3.77μM, respectively. Also, tebufenpyrad and pyridaben (3μM) exposure induced reactive oxygen species (ROS) generation and m-aconitase damage, suggesting that the pesticide toxicity is associated with oxidative damage. Morphometric image analysis with the MitoTracker red fluorescent probe indicated that tebufenpyrad and pyridaben, as well as rotenone, caused abnormalities in mitochondrial morphology, including reduced mitochondrial length and circularity. Functional bioenergetic experiments using the Seahorse XF96 analyzer revealed that tebufenpyrad and pyridaben very rapidly suppressed the basal mitochondrial oxygen consumption rate similar to that of rotenone. Further analysis of bioenergetic curves also revealed dose-dependent decreases in ATP-linked respiration and respiratory capacity. The luminescence-based ATP measurement further confirmed that pesticide-induced mitochondrial inhibition of respiration is accompanied by the loss of cellular ATP. Collectively, our results suggest that exposure to the pesticides tebufenpyrad and pyridaben induces neurotoxicity by rapidly initiating mitochondrial dysfunction and oxidative damage in dopaminergic neuronal cells. Our findings also reveal that monitoring the kinetics of mitochondrial respiration with Seahorse could be used as an early neurotoxicological high-throughput index for assessing the risk that pesticides pose to the dopaminergic neuronal system.
唑虫酰胺和哒螨灵是两种在农业化学领域具有重要意义的杀螨剂,其作用方式与已知的线粒体毒物鱼藤酮类似。尽管这两种化合物已在商业温室中普遍用于杀灭螨类和蜱虫种群,但其神经毒性特征仍 largely 未知。因此,我们使用 Seahorse 生物分析仪和共聚焦荧光成像技术,在体外细胞培养模型中研究了这两种农药对线粒体结构和功能的影响。并将这些影响与鱼藤酮进行了比较。将大鼠多巴胺能神经元细胞(N27 细胞)暴露于唑虫酰胺和哒螨灵 3 小时,会诱导剂量依赖性细胞死亡,其半数有效浓度(EC50)分别为 3.98μM 和 3.77μM。此外,暴露于唑虫酰胺和哒螨灵(3μM)会诱导活性氧(ROS)生成和间乌头酸酶损伤,这表明农药毒性与氧化损伤有关。使用 MitoTracker 红色荧光探针进行的形态计量图像分析表明,唑虫酰胺、哒螨灵以及鱼藤酮都会导致线粒体形态异常,包括线粒体长度和圆形度降低。使用 Seahorse XF96 分析仪进行的功能性生物能量实验表明,唑虫酰胺和哒螨灵能非常迅速地抑制基础线粒体氧消耗率,与鱼藤酮相似。对生物能量曲线的进一步分析还揭示了与 ATP 相关的呼吸作用和呼吸能力呈剂量依赖性下降。基于发光的 ATP 测量进一步证实,农药诱导的线粒体呼吸抑制伴随着细胞 ATP 的损失。总体而言,我们的结果表明,暴露于唑虫酰胺和哒螨灵这两种农药会通过迅速引发多巴胺能神经元细胞中的线粒体功能障碍和氧化损伤而诱导神经毒性。我们的研究结果还表明,用 Seahorse 监测线粒体呼吸动力学可作为一种早期神经毒理学高通量指标,用于评估农药对多巴胺能神经元系统构成的风险。