Suppr超能文献

用于计算机断层扫描图像质量评估的投影域病变插入

Lesion Insertion in Projection Domain for Computed Tomography Image Quality Assessment.

作者信息

Chen Baiyu, Yu Zhicong, Leng Shuai, Yu Lifeng, McCollough Cynthia

机构信息

Radiology Department, Mayo Clinic, Rochester, MN 55905 USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2015 Feb 21;9412. doi: 10.1117/12.2082049.

Abstract

To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way to achieve this objective is to create hybrid images that combine patient images with simulated lesions. Because conventional hybrid images generated in the image-domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Liver lesion models were forward projected according to the geometry of a commercial CT scanner to acquire lesion projections. The lesion projections were then inserted into patient projections (decoded from commercial CT raw data with the assistance of the vendor) and reconstructed to acquire hybrid images. To validate the accuracy of the forward projection geometry, simulated images reconstructed from the forward projections of a digital ACR phantom were compared to physically acquired ACR phantom images. To validate the hybrid images, lesion models were inserted into patient images and visually assessed. Results showed that the simulated phantom images and the physically acquired phantom images had great similarity in terms of HU accuracy and high-contrast resolution. The lesions in the hybrid image had a realistic appearance and merged naturally into the liver background. In addition, the inserted lesion demonstrated reconstruction-parameter-dependent appearance. Compared to conventional image-domain approach, our method enables more realistic hybrid images for image quality assessment.

摘要

为了在CT中进行基于任务的图像质量评估,需要有大量具有已知诊断真值的逼真患者图像。实现这一目标的一种有效方法是创建将患者图像与模拟病变相结合的混合图像。由于在图像域中生成的传统混合图像无法反映扫描和重建参数对病变外观的影响,本研究探索了一种投影域方法。根据商用CT扫描仪的几何结构对肝脏病变模型进行正投影,以获取病变投影。然后将病变投影插入患者投影(在供应商的协助下从商用CT原始数据解码)并重建以获取混合图像。为了验证正投影几何结构的准确性,将从数字ACR体模的正投影重建的模拟图像与实际采集的ACR体模图像进行比较。为了验证混合图像,将病变模型插入患者图像并进行视觉评估。结果表明,模拟体模图像和实际采集的体模图像在HU准确性和高对比度分辨率方面具有很大的相似性。混合图像中的病变具有逼真的外观,并自然地融入肝脏背景。此外,插入的病变表现出与重建参数相关的外观。与传统的图像域方法相比,我们的方法能够生成更逼真的混合图像用于图像质量评估。

相似文献

1
Lesion Insertion in Projection Domain for Computed Tomography Image Quality Assessment.
Proc SPIE Int Soc Opt Eng. 2015 Feb 21;9412. doi: 10.1117/12.2082049.
2
Lesion insertion in the projection domain: Methods and initial results.
Med Phys. 2015 Dec;42(12):7034-42. doi: 10.1118/1.4935530.
3
Technical Note: Insertion of digital lesions in the projection domain for dual-source, dual-energy CT.
Med Phys. 2017 May;44(5):1655-1660. doi: 10.1002/mp.12185. Epub 2017 Apr 17.

引用本文的文献

1
2
Deep-learning-based model observer for a lung nodule detection task in computed tomography.
J Med Imaging (Bellingham). 2020 Jul;7(4):042807. doi: 10.1117/1.JMI.7.4.042807. Epub 2020 Jun 30.
3
Interchangeability between real and three-dimensional simulated lung tumors in computed tomography: an interalgorithm volumetry study.
J Med Imaging (Bellingham). 2018 Jul;5(3):035504. doi: 10.1117/1.JMI.5.3.035504. Epub 2018 Sep 24.
6
Evaluation of a projection-domain lung nodule insertion technique in thoracic CT.
Proc SPIE Int Soc Opt Eng. 2016 Feb;9783. doi: 10.1117/12.2217009. Epub 2016 Apr 4.

本文引用的文献

2
Three-dimensional simulation of lung nodules for paediatric multidetector array CT.
Br J Radiol. 2009 May;82(977):401-11. doi: 10.1259/bjr/51749983. Epub 2009 Jan 19.
4
Simulation of liver lesions for pediatric CT.
Radiology. 2006 Feb;238(2):699-705. doi: 10.1148/radiol.2381050477. Epub 2005 Dec 21.
5
Fast calculation of the exact radiological path for a three-dimensional CT array.
Med Phys. 1985 Mar-Apr;12(2):252-5. doi: 10.1118/1.595715.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验