Suppr超能文献

一种用于模拟低剂量计算机断层扫描图像的基于通用图像的噪声添加方法的开发、验证及应用

Development, validation, and application of a generic image-based noise addition method for simulating reduced dose computed tomography images.

作者信息

Alsaihati Njood, Solomon Justin, McCrum Erin, Samei Ehsan

机构信息

Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA.

Center for Virtual Imaging Trials (CVIT), Duke University, Durham, North Carolina, USA.

出版信息

Med Phys. 2025 Jan;52(1):171-187. doi: 10.1002/mp.17444. Epub 2024 Oct 10.

Abstract

BACKGROUND

Major efforts in computed tomography (CT) have been focused on reducing radiation dose to patients while maintaining adequate diagnostic quality. To that end, research tools have been developed to simulate reduced-dose images via either image-based or projection-based methods. The former is limited to fully capturing realistic texture, streak, and non-stationary characteristics of reduced dose, while the latter is impractical clinically.

PURPOSE

To develop and validate an image-based noise addition method that accounts for such attributes while being practical in clinical settings.

METHODS

A noise addition method was developed to add realistic noise in the image domain. The method first estimates the noise power spectrum (NPS) of CT images, which are also forward-projected to form synthetic projections. The projection data are supplemented with random white noise proportional to their attenuation values. The noise sinogram is then back-projected onto the image, filtered by the NPS, and scaled according to the desired dose reduction level. The tool was evaluated using both phantom images and patient data. The phantom images were acquired using a multi-sized image quality phantom (Mercury Phantom 3.0, Duke University), and a thorax anthropomorphic phantom (Lungman Phantom, Kyoto Kagaku) at different dose levels and reconstruction settings. The patient images consisted of two dose levels of various CT examinations and reconstruction settings. The simulated and real reduced-dose images were compared in terms of the noise magnitude and texture (i.e., NPS average frequency, NPS-f). The utility of this methodology was also assessed for routine clinical use for CT protocol review.

RESULTS

For the phantom images, the percent errors in the noise magnitude between the simulated images and the actual images of the Mercury Phantom and anthropomorphic phantom images were 3.34% and 3.50%, respectively. The difference in f was 0.07 mm for the Mercury Phantom and 0.06 mm for the anthropomorphic phantom between the simulated and actual images. The average noise magnitude percent error between the simulated and actual patient images was 4.61% with noise texture judged to be visually comparable with some kernel dependencies. When implemented clinically, the tool proved practical to simplify the process of estimating radiation dose reduction for CT protocols, resulting in a 50% dose reduction of our multiple myeloma protocol.

CONCLUSIONS

The method generated simulated CT images with realistic noise properties similar to images acquired at the same radiation exposure without needing access to raw projection data.

摘要

背景

计算机断层扫描(CT)的主要工作集中在降低患者辐射剂量的同时保持足够的诊断质量。为此,已经开发了研究工具,通过基于图像或基于投影的方法来模拟低剂量图像。前者仅限于完全捕捉低剂量的真实纹理、条纹和非平稳特征,而后者在临床上不实用。

目的

开发并验证一种基于图像的噪声添加方法,该方法在考虑这些属性的同时在临床环境中具有实用性。

方法

开发了一种噪声添加方法,用于在图像域中添加真实噪声。该方法首先估计CT图像的噪声功率谱(NPS),这些图像也被向前投影以形成合成投影。投影数据用与其衰减值成比例的随机白噪声进行补充。然后将噪声正弦图反向投影到图像上,通过NPS进行滤波,并根据所需的剂量降低水平进行缩放。使用体模图像和患者数据对该工具进行评估。体模图像使用多尺寸图像质量体模(水星体模3.0,杜克大学)和胸部仿真体模(Lungman体模,京都化学)在不同剂量水平和重建设置下采集。患者图像包括不同CT检查和重建设置的两个剂量水平。从噪声幅度和纹理(即NPS平均频率,NPS-f)方面比较模拟的和实际的低剂量图像。还评估了该方法在CT协议审查的常规临床应用中的实用性。

结果

对于体模图像,水星体模和仿真体模图像的模拟图像与实际图像之间的噪声幅度百分比误差分别为3.34%和3.50%。模拟图像与实际图像之间,水星体模的f差异为0.07毫米,仿真体模的f差异为0.06毫米。模拟患者图像与实际患者图像之间的平均噪声幅度百分比误差为4.61%,噪声纹理在视觉上与某些内核依赖性相当。在临床应用时,该工具被证明在简化CT协议辐射剂量降低估计过程方面具有实用性,使我们的多发性骨髓瘤协议的剂量降低了50%。

结论

该方法生成的模拟CT图像具有与在相同辐射暴露下采集的图像相似的真实噪声特性,而无需访问原始投影数据。

相似文献

本文引用的文献

8
Accurate Image Domain Noise Insertion in CT Images.CT 图像中的准确图像域噪声插入。
IEEE Trans Med Imaging. 2020 Jun;39(6):1906-1916. doi: 10.1109/TMI.2019.2961837. Epub 2019 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验