Meyerholt Johannes, Zaehle Sönke
Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, D-07745, Jena, Germany.
International Max Planck Research School (IMPRS) for Global Biogeochemical Cycles, Hans-Knöll-Str. 10, D-07745, Jena, Germany.
New Phytol. 2015 Dec;208(4):1042-55. doi: 10.1111/nph.13547. Epub 2015 Jul 6.
The response of the forest carbon (C) balance to changes in nitrogen (N) deposition is uncertain, partly owing to diverging representations of N cycle processes in dynamic global vegetation models (DGVMs). Here, we examined how different assumptions about the degree of flexibility of the ecosystem's C : N ratios contribute to this uncertainty, and which of these assumptions best correspond to the available data. We applied these assumptions within the framework of a DGVM and compared the results to responses in net primary productivity (NPP), leaf N concentration, and ecosystem N partitioning, observed at 22 forest N fertilization experiments. Employing flexible ecosystem pool C : N ratios generally resulted in the most convincing model-data agreement with respect to production and foliar N responses. An intermediate degree of stoichiometric flexibility in vegetation, where wood C : N ratio changes were decoupled from leaf and root C : N ratio changes, led to consistent simulation of production and N cycle responses to N addition. Assuming fixed C : N ratios or scaling leaf N concentration changes to other tissues, commonly assumed by DGVMs, was not supported by reported data. Between the tested assumptions, the simulated changes in ecosystem C storage relative to changes in C assimilation varied by up to 20%.
森林碳(C)平衡对氮(N)沉降变化的响应尚不确定,部分原因是动态全球植被模型(DGVMs)中氮循环过程的表述存在差异。在此,我们研究了关于生态系统碳氮比灵活性程度的不同假设如何导致这种不确定性,以及这些假设中哪些最符合现有数据。我们在一个DGVM框架内应用了这些假设,并将结果与在22个森林氮肥试验中观测到的净初级生产力(NPP)、叶片氮浓度和生态系统氮分配的响应进行了比较。采用灵活的生态系统库碳氮比通常会在生产和叶片氮响应方面产生最令人信服的模型 - 数据一致性。植被中化学计量灵活性的中间程度,即木材碳氮比变化与叶片和根系碳氮比变化解耦,导致对氮添加的生产和氮循环响应的一致模拟。假设固定的碳氮比或按比例将叶片氮浓度变化应用于其他组织,这是DGVMs通常采用的做法,但未得到报告数据的支持。在所测试的假设之间,相对于碳同化变化,模拟的生态系统碳储存变化差异高达20%。