Bermingham Mairead L, Handel Ian G, Glass Elizabeth J, Woolliams John A, de Clare Bronsvoort B Mark, McBride Stewart H, Skuce Robin A, Allen Adrian R, McDowell Stanley W J, Bishop Stephen C
The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG.
Agri-Food and Biosciences Institute Stormont, Stoney Road, Belfast, BT4 3SD, UK.
Sci Rep. 2015 Jul 7;5:11861. doi: 10.1038/srep11861.
Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of 'gold standard' tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies.
诊断测试的敏感性和特异性是概率估计值,对疾病控制、管理和基因研究具有深远影响。在缺乏“金标准”测试的情况下,传统的贝叶斯潜在类别模型可用于通过比较对同一组个体进行的两种或更多种测试来评估诊断测试的准确性。本研究的目的是使用疾病监测数据扩展此类模型,以估计诊断测试参数和特定队列的真实患病率。传统的Hui-Walter潜在类别方法得到了扩展,以考虑此类数据中出现的特征,包括(i)未记录的数据(即仅在抽样人群的一个子集中可获得的第二次测试的数据)和(ii)特定队列的敏感性和特异性。该模型在有和没有对测试之间的条件依赖性进行建模的情况下应用。通过将扩展模型应用于来自北爱尔兰和爱尔兰共和国的牛结核病监测数据,证明了该扩展模型的实用性。模拟结合重采样技术表明,扩展模型具有良好的预测能力,可根据监测数据估计诊断参数和真实畜群水平的患病率。我们的方法有助于解释疾病监测数据,其结果可能会完善疾病控制策略。