Suppr超能文献

使用随机效应模型在家庭和双胞胎研究中估计边际遗传效应

Marginal genetic effects estimation in family and twin studies using random-effects models.

作者信息

Tsonaka Roula, van der Woude Diane, Houwing-Duistermaat Jeanine

机构信息

Department of Medical Statistics and BioInformatics, Leiden University Medical Center, Post Zone S5-P, PO Box 9600, 2300 RC Leiden, The Netherlands.

Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Biometrics. 2015 Dec;71(4):1130-8. doi: 10.1111/biom.12350. Epub 2015 Jul 6.

Abstract

Random-effects models are often used in family-based genetic association studies to properly capture the within families relationships. In such models, the regression parameters have a conditional on the random effects interpretation and they measure, e.g., genetic effects for each family. Estimating parameters that can be used to make inferences at the population level is often more relevant than the family-specific effects, but not straightforward. This is mainly for two reasons: First the analysis of family data often requires high-dimensional random-effects vectors to properly model the familial relationships, for instance when members with a different degree of relationship are considered, such as trios, mix of monozygotic and dizygotic twins, etc. The second complication is the biased sampling design, such as the multiple cases families design, which is often employed to enrich the sample with genetic information. For these reasons deriving parameters with the desired marginal interpretation can be challenging. In this work we consider the marginalized mixed-effects models, we discuss challenges in applying them in ascertained family data and propose penalized maximum likelihood methodology to stabilize the parameter estimation by using external information on the disease prevalence or heritability. The performance of our methodology is evaluated via simulation and is illustrated on data from Rheumatoid Arthritis patients, where we estimate the marginal effect of HLA-DRB1*13 and shared epitope alleles across three different study designs and combine them using meta-analysis.

摘要

随机效应模型常用于基于家系的基因关联研究,以恰当地捕捉家系内的关系。在这类模型中,回归参数基于随机效应解释,例如它们衡量每个家系的基因效应。估计可用于在总体水平上进行推断的参数通常比特定于家系的效应更具相关性,但并非易事。这主要有两个原因:首先,家系数据分析通常需要高维随机效应向量来恰当地对家系关系进行建模,例如当考虑不同亲缘程度的成员时,如三联体、单卵双胞胎和双卵双胞胎的混合等。第二个复杂因素是有偏抽样设计,如多病例家系设计,它常被用于通过基因信息丰富样本。由于这些原因,推导具有所需边际解释的参数可能具有挑战性。在这项工作中,我们考虑边际化混合效应模型,讨论在已确定的家系数据中应用它们时的挑战,并提出惩罚最大似然方法,通过使用疾病患病率或遗传力的外部信息来稳定参数估计。我们方法的性能通过模拟进行评估,并在类风湿性关节炎患者的数据上进行说明,在那里我们估计了HLA - DRB1*13的边际效应以及在三种不同研究设计中的共享表位等位基因,并使用荟萃分析将它们结合起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验