Suppr超能文献

使用双变量模型理解聚类间和聚类内回归系数,并应用于双胞胎数据。

Using bivariate models to understand between- and within-cluster regression coefficients, with application to twin data.

作者信息

Gurrin Lyle C, Carlin John B, Sterne Jonathan A C, Dite Gillian S, Hopper John L

机构信息

Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, University of Melbourne, Carlton, Victoria 3053, Australia.

出版信息

Biometrics. 2006 Sep;62(3):745-51. doi: 10.1111/j.1541-0420.2006.00561.x.

Abstract

In the regression analysis of clustered data it is important to allow for the possibility of distinct between- and within-cluster exposure effects on the outcome measure, represented, respectively, by regression coefficients for the cluster mean and the deviation of the individual-level exposure value from this mean. In twin data, the within-pair regression effect represents association conditional on exposures shared within pairs, including any common genetic or environmental influences on the outcome measure. It has therefore been proposed that a comparison of the within-pair regression effects between monozygous (MZ) and dizygous (DZ) twins can be used to examine whether the association between exposure and outcome has a genetic origin. We address this issue by proposing a bivariate model for exposure and outcome measurements in twin-pair data. The between- and within-pair regression coefficients are shown to be weighted averages of ratios of the exposure and outcome variances and covariances, from which it is straightforward to determine the conditions under which the within-pair regression effect in MZ pairs will be different from that in DZ pairs. In particular, we show that a correlation structure in twin pairs for exposure and outcome that appears to be due to genetic factors will not necessarily be reflected in distinct MZ and DZ values for the within-pair regression coefficients. We illustrate these results in a study of female twin pairs from Australia and North America relating mammographic breast density to weight and body mass index.

摘要

在聚类数据的回归分析中,考虑集群间和集群内暴露对结果测量的不同影响的可能性很重要,这分别由集群均值的回归系数以及个体水平暴露值与该均值的偏差来表示。在双胞胎数据中,配对内回归效应表示在配对内共享暴露条件下的关联,包括对结果测量的任何共同遗传或环境影响。因此,有人提出,比较同卵双胞胎(MZ)和异卵双胞胎(DZ)之间的配对内回归效应可用于检验暴露与结果之间的关联是否有遗传起源。我们通过为双胞胎配对数据中的暴露和结果测量提出一个双变量模型来解决这个问题。集群间和配对内回归系数被证明是暴露和结果方差及协方差比率的加权平均值,从中可以直接确定MZ配对中的配对内回归效应与DZ配对中的配对内回归效应不同的条件。特别是,我们表明,双胞胎配对中暴露和结果的相关结构似乎是由遗传因素导致的,但不一定会反映在配对内回归系数的不同MZ和DZ值中。我们在一项对来自澳大利亚和北美的女性双胞胎配对的研究中说明了这些结果,该研究将乳腺X线摄影的乳房密度与体重和体重指数联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验