Suppr超能文献

迈向自组装混合人工细胞:功能性合成膜的新型自下而上方法。

Towards self-assembled hybrid artificial cells: novel bottom-up approaches to functional synthetic membranes.

作者信息

Brea Roberto J, Hardy Michael D, Devaraj Neal K

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093 (USA), Fax: (+1) 858-534-9503 Homepage: http://devarajgroup.ucsd.edu.

出版信息

Chemistry. 2015 Sep 1;21(36):12564-70. doi: 10.1002/chem.201501229. Epub 2015 Jul 6.

Abstract

There has been increasing interest in utilizing bottom-up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing "hybrid" artificial cells. This Concept article covers recent advances and the current state-of-the-art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology.

摘要

利用自下而上的方法来开发合成细胞的兴趣与日俱增。一种流行的方法是将功能化的合成膜与生物系统整合,从而产生“杂交”人工细胞。这篇概念文章涵盖了此类杂交系统的最新进展和当前的技术水平。具体而言,我们描述了最小的超分子构建体,这些构建体通常通过控制具有特定功能的高度有序膜结构的组装,忠实地模拟活细胞的结构和/或功能。这些研究让我们对生命系统的本质有了更深入的理解,为细胞生命的起源带来了新的见解,并为推进合成生物学提供了新型的合成底盘。

相似文献

1
Towards self-assembled hybrid artificial cells: novel bottom-up approaches to functional synthetic membranes.
Chemistry. 2015 Sep 1;21(36):12564-70. doi: 10.1002/chem.201501229. Epub 2015 Jul 6.
2
The engineering of artificial cellular nanosystems using synthetic biology approaches.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 Jul-Aug;6(4):369-83. doi: 10.1002/wnan.1265. Epub 2014 Mar 25.
3
Organization of an Artificial Multicellular System with a Tunable DNA Patch on a Membrane Surface.
Nano Lett. 2024 Jan 10;24(1):433-440. doi: 10.1021/acs.nanolett.3c04249. Epub 2023 Dec 19.
4
vesicle formation and growth: an integrative approach to artificial cells.
Chem Sci. 2017 Dec 1;8(12):7912-7922. doi: 10.1039/c7sc02339a. Epub 2017 Oct 26.
5
Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2206563119. doi: 10.1073/pnas.2206563119. Epub 2022 Oct 12.
6
Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review.
Adv Biosyst. 2019 Jun;3(6):e1800318. doi: 10.1002/adbi.201800318. Epub 2019 May 7.
7
Shape and Size Control of Artificial Cells for Bottom-Up Biology.
ACS Nano. 2019 May 28;13(5):5439-5450. doi: 10.1021/acsnano.9b00220. Epub 2019 May 16.
8
Cellular imitations.
Curr Opin Chem Biol. 2012 Dec;16(5-6):586-92. doi: 10.1016/j.cbpa.2012.10.020. Epub 2012 Nov 6.
9
Tailoring the appearance: what will synthetic cells look like?
Curr Opin Biotechnol. 2018 Jun;51:47-56. doi: 10.1016/j.copbio.2017.11.005. Epub 2017 Nov 26.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
Artificial cells and biomimicry cells: A rising star in the fight against cancer.
Mater Today Bio. 2025 Apr 3;32:101723. doi: 10.1016/j.mtbio.2025.101723. eCollection 2025 Jun.
2
Pepticombisomes: Biomimetic Vesicles Crafted From Recombinant Supercharged Polypeptides with Uniformly Distributed Side-Chains.
Adv Sci (Weinh). 2025 Apr;12(15):e2411497. doi: 10.1002/advs.202411497. Epub 2025 Feb 22.
3
Biomimetic construction of phospholipid membranes by direct aminolysis ligations.
Interface Focus. 2023 Aug 11;13(5):20230019. doi: 10.1098/rsfs.2023.0019. eCollection 2023 Oct 6.
4
Bottom-Up Construction of a Minimal System for Cellular Respiration and Energy Regeneration.
ACS Synth Biol. 2020 Jun 19;9(6):1450-1459. doi: 10.1021/acssynbio.0c00110. Epub 2020 May 22.
5
Encapsulation of hydrophobic components in dendrimersomes and decoration of their surface with proteins and nucleic acids.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15378-15385. doi: 10.1073/pnas.1904868116. Epub 2019 Jul 15.
6
Physicochemical Characterization of Polymer-Stabilized Coacervate Protocells.
Chembiochem. 2019 Oct 15;20(20):2643-2652. doi: 10.1002/cbic.201900195. Epub 2019 Jul 25.
7
Spatiotemporal control of coacervate formation within liposomes.
Nat Commun. 2019 Apr 17;10(1):1800. doi: 10.1038/s41467-019-09855-x.
8
Synthetic Minimal Cell: Self-Reproduction of the Boundary Layer.
ACS Omega. 2019 Mar 31;4(3):5293-5303. doi: 10.1021/acsomega.8b02955. Epub 2019 Mar 13.
9
A minimal biochemical route towards de novo formation of synthetic phospholipid membranes.
Nat Commun. 2019 Jan 17;10(1):300. doi: 10.1038/s41467-018-08174-x.
10
Is Research on "Synthetic Cells" Moving to the Next Level?
Life (Basel). 2018 Dec 26;9(1):3. doi: 10.3390/life9010003.

本文引用的文献

1
An intercompartmental enzymatic cascade reaction in channel-equipped polymersome-in-polymersome architectures.
J Mater Chem B. 2014 May 14;2(18):2733-2737. doi: 10.1039/c3tb21849j. Epub 2014 Mar 27.
2
Hybrid polymersomes: facile manipulation of vesicular surfaces for enhancing cellular interaction.
J Mater Chem B. 2013 Nov 14;1(42):5751-5755. doi: 10.1039/c3tb21111h. Epub 2013 Oct 1.
3
Rapid access to phospholipid analogs using thiol-yne chemistry.
Chem Sci. 2015 Jul 1;6(7):4365-4372. doi: 10.1039/c5sc00653h. Epub 2015 May 19.
4
Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8187-92. doi: 10.1073/pnas.1506704112. Epub 2015 Jun 22.
6
Compartmentalization of incompatible reagents within Pickering emulsion droplets for one-pot cascade reactions.
J Am Chem Soc. 2015 Jan 28;137(3):1362-71. doi: 10.1021/ja512337z. Epub 2015 Jan 20.
7
In situ vesicle formation by native chemical ligation.
Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14102-5. doi: 10.1002/anie.201408538. Epub 2014 Oct 24.
8
Synthetic biology. Programmable on-chip DNA compartments as artificial cells.
Science. 2014 Aug 15;345(6198):829-32. doi: 10.1126/science.1255550.
9
Mimicking biological membranes with programmable glycan ligands self-assembled from amphiphilic Janus glycodendrimers.
Angew Chem Int Ed Engl. 2014 Oct 6;53(41):10899-903. doi: 10.1002/anie.201403186. Epub 2014 Jun 12.
10
Design and construction of higher-order structure and function in proteinosome-based protocells.
J Am Chem Soc. 2014 Jun 25;136(25):9225-34. doi: 10.1021/ja504213m. Epub 2014 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验