Suppr超能文献

针对初级医疗保健领域的肾风险药物开发计算机化决策支持系统。

Development of a computerised decisions support system for renal risk drugs targeting primary healthcare.

作者信息

Helldén Anders, Al-Aieshy Fadiea, Bastholm-Rahmner Pia, Bergman Ulf, Gustafsson Lars L, Höök Hans, Sjöviker Susanne, Söderström Anders, Odar-Cederlöf Ingegerd

机构信息

Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.

Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden.

出版信息

BMJ Open. 2015 Jul 6;5(7):e006775. doi: 10.1136/bmjopen-2014-006775.

Abstract

OBJECTIVES

To assess general practitioners (GPs) experience from the implementation and use of a renal computerised decision support system (CDSS) for drug dosing, developed for primary healthcare, integrated into the patient's electronic health record (EHR), and building on estimation of the patient's creatinine clearance (ClCG).

DESIGN

Qualitative research design by a questionnaire and a focus group discussion.

SETTING AND PARTICIPANTS

Eight GPs at two primary healthcare centres (PHCs).

INTERVENTIONS

The GP at PHC 1, and the project group, developed and tested the technical solution of the CDSS. Proof-of-concept was tested by seven GPs at PHC 2. They also participated in a group discussion and answered a questionnaire. A web window in the EHR gave drug and dosage in relation to ClCG. Each advice was according to three principles: If? Why? Because.

OUTCOME MEASURES

(1) The GPs' experience of 'easiness to use' and 'perceived usefulness' at PHC 2, based on loggings of use, answers from a questionnaire using a 5-point Likert scale, and answers from a focus group discussion. (2) The number of patients aged 65 years and older with an estimation of ClCG before and after the implementation of the CDSS.

RESULTS

The GPs found the CDSS fast, simple and easy to use. They appreciated the automatic presentation of the CICG status on opening the medication list, and the ability to actively look up specific drug recommendations in two steps. The CDSS scored high on the Likert scale. All GPs wanted to continue the use of the CDSS and to recommend it to others. The number of patients with an estimated ClCG increased 1.6-fold.

CONCLUSIONS

Acceptance of the simple graphical interface of this push and pull renal CDSS was high among the primary care physicians evaluating this proof of concept. The graphical model should be useful for further development of renal decision support systems.

摘要

目的

评估全科医生(GPs)在实施和使用一种用于药物剂量计算的肾脏计算机决策支持系统(CDSS)方面的经验。该系统是为初级医疗保健开发的,集成到患者的电子健康记录(EHR)中,并基于患者肌酐清除率(ClCG)的估算。

设计

通过问卷调查和焦点小组讨论进行定性研究设计。

设置和参与者

两个初级医疗保健中心(PHCs)的8名全科医生。

干预措施

PHC 1的全科医生和项目组开发并测试了CDSS的技术解决方案。PHC 2的7名全科医生对概念验证进行了测试。他们还参加了小组讨论并回答了问卷。EHR中的一个网络窗口根据ClCG给出药物和剂量。每条建议都遵循三个原则:如果?为什么?因为。

结果测量

(1)基于使用记录、使用5点李克特量表的问卷调查答案以及焦点小组讨论的答案,PHC 2的全科医生对“易用性”和“感知有用性”的体验。(2)CDSS实施前后估算ClCG的65岁及以上患者数量。

结果

全科医生发现CDSS快速、简单且易于使用。他们赞赏在打开药物清单时自动显示CICG状态,以及能够通过两步主动查找特定药物建议。CDSS在李克特量表上得分很高。所有全科医生都希望继续使用CDSS并推荐给他人。估算ClCG的患者数量增加了1.6倍。

结论

在评估这一概念验证的初级保健医生中,这种推拉式肾脏CDSS的简单图形界面的接受度很高。该图形模型应有助于肾脏决策支持系统的进一步开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验