Suppr超能文献

烟曲霉中 Gliotoxin 抗性、分泌与甲基/蛋氨酸循环之间的相互作用

Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus.

作者信息

Owens Rebecca A, O'Keeffe Grainne, Smith Elizabeth B, Dolan Stephen K, Hammel Stephen, Sheridan Kevin J, Fitzpatrick David A, Keane Thomas M, Jones Gary W, Doyle Sean

机构信息

Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.

The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom.

出版信息

Eukaryot Cell. 2015 Sep;14(9):941-57. doi: 10.1128/EC.00055-15. Epub 2015 Jul 6.

Abstract

Mechanistic studies on gliotoxin biosynthesis and self-protection in Aspergillus fumigatus, both of which require the gliotoxin oxidoreductase GliT, have revealed a rich landscape of highly novel biochemistries, yet key aspects of this complex molecular architecture remain obscure. Here we show that an A. fumigatus ΔgliA strain is completely deficient in gliotoxin secretion but still retains the ability to efflux bisdethiobis(methylthio)gliotoxin (BmGT). This correlates with a significant increase in sensitivity to exogenous gliotoxin because gliotoxin trapped inside the cell leads to (i) activation of the gli cluster, as disabling gli cluster activation, via gliZ deletion, attenuates the sensitivity of an A. fumigatus ΔgliT strain to gliotoxin, thus implicating cluster activation as a factor in gliotoxin sensitivity, and (ii) increased methylation activity due to excess substrate (dithiol gliotoxin) for the gliotoxin bis-thiomethyltransferase GtmA. Intracellular dithiol gliotoxin is oxidized by GliT and subsequently effluxed by GliA. In the absence of GliA, gliotoxin persists in the cell and is converted to BmGT, with levels significantly higher than those in the wild type. Similarly, in the ΔgliT strain, gliotoxin oxidation is impeded, and methylation occurs unchecked, leading to significant S-adenosylmethionine (SAM) depletion and S-adenosylhomocysteine (SAH) overproduction. This in turn significantly contributes to the observed hypersensitivity of gliT-deficient A. fumigatus to gliotoxin. Our observations reveal a key role for GliT in preventing dysregulation of the methyl/methionine cycle to control intracellular SAM and SAH homeostasis during gliotoxin biosynthesis and exposure. Moreover, we reveal attenuated GliT abundance in the A. fumigatus ΔgliK strain, but not the ΔgliG strain, following exposure to gliotoxin, correlating with relative sensitivities. Overall, we illuminate new systems interactions that have evolved in gliotoxin-producing, compared to gliotoxin-naive, fungi to facilitate their cellular presence.

摘要

烟曲霉中与GliT(一种麦角硫因氧化还原酶)相关的麦角硫因生物合成及自我保护机制研究,揭示了一系列丰富且新颖的生物化学过程,但这种复杂分子结构的关键方面仍不清楚。在此,我们发现烟曲霉ΔgliA菌株完全缺乏麦角硫因分泌能力,但仍保留排出双去硫双(甲硫基)麦角硫因(BmGT)的能力。这与对外源麦角硫因敏感性显著增加相关,因为细胞内被困的麦角硫因会导致:(i)gli簇的激活,因为通过缺失gliZ使gli簇激活失能,会减弱烟曲霉ΔgliT菌株对麦角硫因的敏感性,从而表明簇激活是麦角硫因敏感性的一个因素;(ii)由于麦角硫因双硫甲基转移酶GtmA的底物(二硫醇麦角硫因)过量导致甲基化活性增加。细胞内的二硫醇麦角硫因被GliT氧化,随后被GliA排出。在没有GliA的情况下,麦角硫因在细胞内持续存在并转化为BmGT,其水平显著高于野生型。同样,在ΔgliT菌株中,麦角硫因氧化受阻,甲基化不受抑制地发生,导致显著的S-腺苷甲硫氨酸(SAM)消耗和S-腺苷高半胱氨酸(SAH)过量产生。这反过来又显著促成了观察到的gliT缺陷型烟曲霉对麦角硫因的超敏反应。我们的观察结果揭示了GliT在防止甲基/甲硫氨酸循环失调以控制麦角硫因生物合成和暴露期间细胞内SAM和SAH稳态方面的关键作用。此外,我们发现烟曲霉ΔgliK菌株在暴露于麦角硫因后GliT丰度降低,但ΔgliG菌株未出现这种情况,这与相对敏感性相关。总体而言,我们阐明了在产生麦角硫因的真菌(与未接触过麦角硫因的真菌相比)中进化出的新系统相互作用,以促进它们在细胞内的存在。

相似文献

1
Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus.
Eukaryot Cell. 2015 Sep;14(9):941-57. doi: 10.1128/EC.00055-15. Epub 2015 Jul 6.
6
8
Regulation of gliotoxin biosynthesis and protection in Aspergillus species.
PLoS Genet. 2022 Jan 18;18(1):e1009965. doi: 10.1371/journal.pgen.1009965. eCollection 2022 Jan.
9
The Aspergillus fumigatus protein GliK protects against oxidative stress and is essential for gliotoxin biosynthesis.
Eukaryot Cell. 2012 Oct;11(10):1226-38. doi: 10.1128/EC.00113-12. Epub 2012 Aug 17.
10
Proteomic dissection of the role of GliZ in gliotoxin biosynthesis in Aspergillus fumigatus.
Fungal Genet Biol. 2023 May;166:103795. doi: 10.1016/j.fgb.2023.103795. Epub 2023 Apr 5.

引用本文的文献

3
The evolution of the gliotoxin biosynthetic gene cluster in Penicillium fungi.
G3 (Bethesda). 2024 May 7;14(5). doi: 10.1093/g3journal/jkae063.
4
The Metabolite Profiling of KMM4631 and Its Co-Cultures with Other Marine Fungi.
Metabolites. 2023 Nov 8;13(11):1138. doi: 10.3390/metabo13111138.
5
Thiol reductive stress activates the hypoxia response pathway.
EMBO J. 2023 Nov 15;42(22):e114093. doi: 10.15252/embj.2023114093. Epub 2023 Oct 2.
6
Gliotoxin-mediated bacterial growth inhibition is caused by specific metal ion depletion.
Sci Rep. 2023 Sep 27;13(1):16156. doi: 10.1038/s41598-023-43300-w.
9
Dithiothreitol causes toxicity in by modulating the methionine-homocysteine cycle.
Elife. 2022 Apr 19;11:e76021. doi: 10.7554/eLife.76021.
10
Precursor Quantitation Methods for Next Generation Food Production.
Front Bioeng Biotechnol. 2022 Mar 10;10:849177. doi: 10.3389/fbioe.2022.849177. eCollection 2022.

本文引用的文献

1
Resistance is not futile: gliotoxin biosynthesis, functionality and utility.
Trends Microbiol. 2015 Jul;23(7):419-28. doi: 10.1016/j.tim.2015.02.005. Epub 2015 Mar 10.
3
A proteomic approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus.
PLoS One. 2014 Sep 8;9(9):e106942. doi: 10.1371/journal.pone.0106942. eCollection 2014.
5
Opposed effects of enzymatic gliotoxin N- and S-methylations.
J Am Chem Soc. 2014 Aug 20;136(33):11674-9. doi: 10.1021/ja5033106. Epub 2014 Aug 7.
7
Epidithiodioxopiperazines. occurrence, synthesis and biogenesis.
Nat Prod Rep. 2014 Oct;31(10):1376-404. doi: 10.1039/c3np70097f.
8
A novel C2H2 transcription factor that regulates gliA expression interdependently with GliZ in Aspergillus fumigatus.
PLoS Genet. 2014 May 1;10(5):e1004336. doi: 10.1371/journal.pgen.1004336. eCollection 2014 May.
9
Gliotoxin: nature's way of making the epidithio bridge.
Angew Chem Int Ed Engl. 2014 Mar 24;53(13):3312-4. doi: 10.1002/anie.201310982. Epub 2014 Feb 24.
10
S-adenosylmethionine limitation induces p38 mitogen-activated protein kinase and triggers cell cycle arrest in G1.
J Cell Sci. 2014 Jan 1;127(Pt 1):50-9. doi: 10.1242/jcs.127811. Epub 2013 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验