Baker Nicola, Hamilton Graham, Wilkes Jonathan M, Hutchinson Sebastian, Barrett Michael P, Horn David
Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
Wellcome Trust Centre of Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9112-7. doi: 10.1073/pnas.1505411112. Epub 2015 Jul 6.
Kinetoplastid parasites cause lethal diseases in humans and animals. The kinetoplast itself contains the mitochondrial genome, comprising a huge, complex DNA network that is also an important drug target. Isometamidium, for example, is a key veterinary drug that accumulates in the kinetoplast in African trypanosomes. Kinetoplast independence and isometamidium resistance are observed where certain mutations in the F1-γ-subunit of the two-sector F1Fo-ATP synthase allow for Fo-independent generation of a mitochondrial membrane potential. To further explore kinetoplast biology and drug resistance, we screened a genome-scale RNA interference library in African trypanosomes for isometamidium resistance mechanisms. Our screen identified 14 V-ATPase subunits and all 4 adaptin-3 subunits, implicating acidic compartment defects in resistance; V-ATPase acidifies lysosomes and related organelles, whereas adaptin-3 is responsible for trafficking among these organelles. Independent strains with depleted V-ATPase or adaptin-3 subunits were isometamidium resistant, and chemical inhibition of the V-ATPase phenocopied this effect. While drug accumulation in the kinetoplast continued after V-ATPase subunit depletion, acriflavine-induced kinetoplast loss was specifically tolerated in these cells and in cells depleted for adaptin-3 or endoplasmic reticulum membrane complex subunits, also identified in our screen. Consistent with kinetoplast dispensability, V-ATPase defective cells were oligomycin resistant, suggesting ATP synthase uncoupling and bypass of the normal Fo-A6-subunit requirement; this subunit is the only kinetoplast-encoded product ultimately required for viability in bloodstream-form trypanosomes. Thus, we describe 30 genes and 3 protein complexes associated with kinetoplast-dependent growth. Mutations affecting these genes could explain natural cases of dyskinetoplasty and multidrug resistance. Our results also reveal potentially conserved communication between the compartmentalized two-sector rotary ATPases.
动质体寄生虫可导致人类和动物患上致命疾病。动质体本身包含线粒体基因组,由一个巨大而复杂的DNA网络组成,该网络也是一个重要的药物靶点。例如,异美啶是一种关键的兽药,它在非洲锥虫的动质体中积累。在F1Fo - ATP合酶的F1 - γ亚基发生某些突变时,会出现动质体独立性和异美啶抗性,这使得线粒体膜电位能够在不依赖Fo的情况下产生。为了进一步探索动质体生物学和耐药性,我们在非洲锥虫中筛选了一个全基因组规模的RNA干扰文库,以寻找异美啶抗性机制。我们的筛选确定了14个V - ATP酶亚基和所有4个衔接蛋白3亚基,这表明酸性区室缺陷与抗性有关;V - ATP酶使溶酶体和相关细胞器酸化,而衔接蛋白3负责这些细胞器之间的运输。V - ATP酶或衔接蛋白3亚基缺失的独立菌株对异美啶具有抗性,对V - ATP酶的化学抑制模拟了这种效果。虽然在V - ATP酶亚基缺失后,药物在动质体中的积累仍在继续,但吖啶黄素诱导的动质体丢失在这些细胞以及在我们的筛选中也鉴定出的衔接蛋白3或内质网膜复合体亚基缺失的细胞中得到了特异性耐受。与动质体的可有可无性一致,V - ATP酶缺陷细胞对寡霉素具有抗性,这表明ATP合酶解偶联并绕过了正常的Fo - A6亚基需求;该亚基是血液形式锥虫生存最终所需的唯一由动质体编码的产物。因此,我们描述了与动质体依赖性生长相关的30个基因和3种蛋白质复合体。影响这些基因的突变可以解释运动不能性贫血和多药耐药的自然病例。我们的结果还揭示了分区化的双部门旋转ATP酶之间潜在的保守通讯。