Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland; Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
Biomaterials. 2015 Oct;65:126-39. doi: 10.1016/j.biomaterials.2015.06.037. Epub 2015 Jun 26.
Critical limb ischemia is a major clinical problem. Despite rigorous treatment regimes, there has been only modest success in reducing the rate of amputations in affected patients. Reduced level of blood flow and enhanced inflammation are the two major pathophysiological changes that occur in the ischemic tissue. The objective of this study was to develop a controlled dual gene delivery system capable of delivering therapeutic plasmid eNOS and IL-10 in a temporal manner. In order to deliver multiple therapeutic genes, an elastin-like polypeptide (ELP) based injectable system was designed. The injectable system was comprised of hollow spheres and an in situ-forming gel scaffold of elastin-like polypeptide capable of carrying gene complexes, with an extended manner release profile. In addition, the ELP based injectable system was used to deliver human eNOS and IL-10 therapeutic genes in vivo. A subcutaneous dose response study showed enhanced blood vessel density in the treatment groups of eNOS (20 μg) and IL-10 (10 μg)/eNOS (20 μg) and reduced inflammation with IL-10 (10 μg) alone. Next, we carried out a hind-limb ischemia model comparing the efficacy of the following interventions; Saline; IL-10, eNOS and IL-10/eNOS. The selected dose of eNOS, exhibited enhanced angiogenesis. IL-10 treatment groups showed reduction in the level of inflammatory cells. Furthermore, we demonstrated that eNOS up-regulated major proangiogenic growth factors such as vascular endothelial growth factors, platelet derived growth factor B, and fibroblast growth factor 1, which may explain the mechanism of this approach. These factors help in formation of a stable vascular network. Thus, ELP injectable system mediating non-viral delivery of human IL10-eNOS is a promising therapy towards treating limb ischemia.
肢体严重缺血是一个主要的临床问题。尽管采取了严格的治疗方案,但在降低受影响患者截肢率方面,收效甚微。血流减少和炎症增强是缺血组织中发生的两个主要病理生理变化。本研究的目的是开发一种能够在时间上递呈治疗性质粒 eNOS 和 IL-10 的可控双重基因传递系统。为了递呈多种治疗基因,设计了一种弹性蛋白样多肽(ELP)基可注射系统。该可注射系统由空心球体和弹性蛋白样多肽的原位形成的凝胶支架组成,能够携带基因复合物,并具有延长的释放特性。此外,该 ELP 基可注射系统用于在体内递呈人 eNOS 和 IL-10 治疗基因。皮下剂量反应研究表明,eNOS(20μg)和 IL-10(10μg)/eNOS(20μg)治疗组的血管密度增加,而单独使用 IL-10 可减少炎症。接下来,我们进行了一项后肢缺血模型研究,比较了以下干预措施的疗效:生理盐水;IL-10、eNOS 和 IL-10/eNOS。所选 eNOS 剂量表现出增强的血管生成。IL-10 治疗组显示炎症细胞水平降低。此外,我们证明 eNOS 上调了主要的促血管生成生长因子,如血管内皮生长因子、血小板衍生生长因子 B 和成纤维细胞生长因子 1,这可能解释了这种方法的机制。这些因子有助于形成稳定的血管网络。因此,ELP 可注射系统介导的人 IL10-eNOS 的非病毒递呈是治疗肢体缺血的一种很有前途的疗法。