Rais Rana, Wozniak Krystyna, Wu Ying, Niwa Minae, Stathis Marigo, Alt Jesse, Giroux Marc, Sawa Akira, Rojas Camilo, Slusher Barbara S
Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America.
Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America.
PLoS One. 2015 Jul 7;10(7):e0131861. doi: 10.1371/journal.pone.0131861. eCollection 2015.
Glutamate carboxypeptidase II (GCP-II) is a brain metallopeptidase that hydrolyzes the abundant neuropeptide N-acetyl-aspartyl-glutamate (NAAG) to NAA and glutamate. Small molecule GCP-II inhibitors increase brain NAAG, which activates mGluR3, decreases glutamate, and provide therapeutic utility in a variety of preclinical models of neurodegenerative diseases wherein excess glutamate is presumed pathogenic. Unfortunately no GCP-II inhibitor has advanced clinically, largely due to their highly polar nature resulting in insufficient oral bioavailability and limited brain penetration. Herein we report a non-invasive route for delivery of GCP-II inhibitors to the brain via intranasal (i.n.) administration. Three structurally distinct classes of GCP-II inhibitors were evaluated including DCMC (urea-based), 2-MPPA (thiol-based) and 2-PMPA (phosphonate-based). While all showed some brain penetration following i.n. administration, 2-PMPA exhibited the highest levels and was chosen for further evaluation. Compared to intraperitoneal (i.p.) administration, equivalent doses of i.n. administered 2-PMPA resulted in similar plasma exposures (AUC0-t, i.n./AUC0-t, i.p. = 1.0) but dramatically enhanced brain exposures in the olfactory bulb (AUC0-t, i.n./AUC0-t, i.p. = 67), cortex (AUC0-t, i.n./AUC0-t, i.p. = 46) and cerebellum (AUC0-t, i.n./AUC0-t, i.p. = 6.3). Following i.n. administration, the brain tissue to plasma ratio based on AUC0-t in the olfactory bulb, cortex, and cerebellum were 1.49, 0.71 and 0.10, respectively, compared to an i.p. brain tissue to plasma ratio of less than 0.02 in all areas. Furthermore, i.n. administration of 2-PMPA resulted in complete inhibition of brain GCP-II enzymatic activity ex-vivo confirming target engagement. Lastly, because the rodent nasal system is not similar to humans, we evaluated i.n. 2-PMPA also in a non-human primate. We report that i.n. 2-PMPA provides selective brain delivery with micromolar concentrations. These studies support intranasal delivery of 2-PMPA to deliver therapeutic concentrations in the brain and may facilitate its clinical development.
谷氨酸羧肽酶II(GCP-II)是一种脑金属肽酶,可将丰富的神经肽N-乙酰天冬氨酰谷氨酸(NAAG)水解为NAA和谷氨酸。小分子GCP-II抑制剂可增加脑内NAAG,激活代谢型谷氨酸受体3(mGluR3),降低谷氨酸水平,并在多种神经退行性疾病的临床前模型中显示出治疗作用,这些模型中过量谷氨酸被认为具有致病性。不幸的是,尚无GCP-II抑制剂进入临床阶段,主要原因是其高度极性导致口服生物利用度不足和脑内渗透受限。在此,我们报告了一种通过鼻内(i.n.)给药将GCP-II抑制剂递送至脑内的非侵入性途径。评估了三类结构不同的GCP-II抑制剂,包括DCMC(基于尿素)、2-MPPA(基于硫醇)和2-PMPA(基于膦酸酯)。虽然所有抑制剂在鼻内给药后均显示出一定程度的脑内渗透,但2-PMPA的脑内渗透水平最高,并被选择进行进一步评估。与腹腔内(i.p.)给药相比,同等剂量的鼻内给予2-PMPA导致相似的血浆暴露量(AUC0-t,i.n./AUC0-t,i.p. = 1.0),但显著提高了嗅球(AUC0-t,i.n./AUC0-t,i.p. = 67)、皮质(AUC0-t,i.n./AUC0-t,i.p. = 46)和小脑(AUC0-t,i.n./AUC0-t,i.p. = 6.3)的脑内暴露量。鼻内给药后,嗅球、皮质和小脑基于AUC0-t的脑组织与血浆比值分别为1.49、0.71和0.10,而腹腔内给药后所有区域的脑组织与血浆比值均小于0.02。此外,鼻内给予2-PMPA可在体外完全抑制脑内GCP-II酶活性,证实了靶点结合。最后,由于啮齿动物的鼻系统与人类不同,我们也在非人类灵长类动物中评估了鼻内给予2-PMPA的情况。我们报告鼻内给予2-PMPA可实现微摩尔浓度的选择性脑内递送。这些研究支持鼻内给予2-PMPA以在脑内递送治疗浓度,并可能促进其临床开发。