Suppr超能文献

通过盲源分离和小波分析消除生物医学信号中的电力线噪声

Powerline noise elimination in biomedical signals via blind source separation and wavelet analysis.

作者信息

Akwei-Sekyere Samuel

机构信息

Neuroscience Program, Michigan State University , East Lansing, MI , USA.

出版信息

PeerJ. 2015 Jul 2;3:e1086. doi: 10.7717/peerj.1086. eCollection 2015.

Abstract

The distortion of biomedical signals by powerline noise from recording biomedical devices has the potential to reduce the quality and convolute the interpretations of the data. Usually, powerline noise in biomedical recordings are extinguished via band-stop filters. However, due to the instability of biomedical signals, the distribution of signals filtered out may not be centered at 50/60 Hz. As a result, self-correction methods are needed to optimize the performance of these filters. Since powerline noise is additive in nature, it is intuitive to model powerline noise in a raw recording and subtract it from the raw data in order to obtain a relatively clean signal. This paper proposes a method that utilizes this approach by decomposing the recorded signal and extracting powerline noise via blind source separation and wavelet analysis. The performance of this algorithm was compared with that of a 4th order band-stop Butterworth filter, empirical mode decomposition, independent component analysis and, a combination of empirical mode decomposition with independent component analysis. The proposed method was able to expel sinusoidal signals within powerline noise frequency range with higher fidelity in comparison with the mentioned techniques, especially at low signal-to-noise ratio.

摘要

来自生物医学记录设备的电力线噪声对生物医学信号的干扰,有可能降低数据质量并使数据解读变得复杂。通常,生物医学记录中的电力线噪声通过带阻滤波器消除。然而,由于生物医学信号的不稳定性,被滤除信号的分布可能并不以50/60赫兹为中心。因此,需要自校正方法来优化这些滤波器的性能。由于电力线噪声本质上是相加性的,所以直观的做法是对原始记录中的电力线噪声进行建模,并从原始数据中减去它,以获得相对干净的信号。本文提出一种方法,该方法通过对记录信号进行分解,并通过盲源分离和小波分析提取电力线噪声来利用这种方法。将该算法的性能与四阶带阻巴特沃斯滤波器、经验模态分解、独立成分分析以及经验模态分解与独立成分分析相结合的方法进行了比较。与上述技术相比,该方法能够以更高的保真度去除电力线噪声频率范围内的正弦信号,尤其是在低信噪比情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faab/4493666/d3c409dc0bfd/peerj-03-1086-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验