Department of Computer Science, College of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Department of Information Systems, College of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Sensors (Basel). 2022 Aug 31;22(17):6592. doi: 10.3390/s22176592.
Epilepsy is a nervous system disorder. Encephalography (EEG) is a generally utilized clinical approach for recording electrical activity in the brain. Although there are a number of datasets available, most of them are imbalanced due to the presence of fewer epileptic EEG signals compared with non-epileptic EEG signals. This research aims to study the possibility of integrating local EEG signals from an epilepsy center in King Abdulaziz University hospital into the CHB-MIT dataset by applying a new compatibility framework for data integration. The framework comprises multiple functions, which include dominant channel selection followed by the implementation of a novel algorithm for reading XLtek EEG data. The resulting integrated datasets, which contain selective channels, are tested and evaluated using a deep-learning model of 1D-CNN, Bi-LSTM, and attention. The results achieved up to 96.87% accuracy, 96.98% precision, and 96.85% sensitivity, outperforming the other latest systems that have a larger number of EEG channels.
癫痫是一种神经系统疾病。脑电图(EEG)是一种常用于记录大脑电活动的临床方法。尽管有许多数据集可用,但由于与非癫痫性 EEG 信号相比,癫痫性 EEG 信号较少,因此大多数数据集都是不平衡的。本研究旨在通过应用新的数据集成兼容性框架,研究将阿卜杜勒阿齐兹国王大学医院癫痫中心的局部 EEG 信号集成到 CHB-MIT 数据集的可能性。该框架包括多个功能,包括主导通道选择,然后实施一种用于读取 XLtek EEG 数据的新算法。使用 1D-CNN、Bi-LSTM 和注意力的深度学习模型对包含选择性通道的集成数据集进行测试和评估。所达到的结果达到了 96.87%的准确率、96.98%的精度和 96.85%的灵敏度,优于其他具有更多 EEG 通道的最新系统。